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Abstract

The main topic for this sheet is supersymmetric algebras and representations. This builds the
foundation to understand the multiplet structure of supersymmetric actions later when we talk about
the superfield formalism. To illustrate this I have therefore revisited Wigner’s classification which is
covered in the AQFT lectures and classes in the class as well as the supersymmetric algebras. This
note is a summary of the topics covered in the class as well as some additional topics that I did not
have time to cover. None of the material here is original and this is a well-developed field - the list
of references is nowhere complete and representative of all the hard work many people have put in
over the last couple of decades.
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As before, I will begin with a summary of the class in §1. The problem sheet feedback is in §2.

1 Class 2 Summary

The main topic for this class is supersymmetric algebras and representations. Although the sheet is
indeed quite straightforward and involves a lot of algebraic manipulations, I have tried to illustrate the
mathematics and physics behind each of these problems. In particular, as we went through the sheet
we inevitably encountered the following topics.

1. Conformal field theory and SCFTs. We discussed what a conformal symmetry is, and
introduced the conformal algebra. For a quick summary of CFTs and SCFTs see §3. This led us
to discussing the scaling dimensions of operators.
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2. Wigner’s Classification. We then reviewed Wigner’s Classification of irreducible representa-
tions of the Poincaré algebra. In particular, we discussed how the little group method works and
the method of induced representations in more general terms. For a quick summary of Wigner’s
Classification due to Bargmann see §5. The method of induced representations is reviewed in §4.

3. Supersymmetric multiplets. Finally we reviewed how the supersymmetric multiplets arise.
In particular, the multiplets are branched irreps of the bigger super-Poincaré group.

I have mainly followed the logic in [1,2] as well as Bertolini’s lecture notes (which a highly recommend
reading) recently published as [3]. I have sneaked in a small discussion of central charges at the end of
the class; an exposition could be found in §6.

2 Problem Sheet 2 Feedback

2.1 Question 1 - Super Jacobi Identities

The main point of this question is to illustrate how to use spinor identities we have developed in the
lectures and the last class to evaluate expressions. The main point to highlight here is that in evaluating
the super Jacobi identities you should use the following lemma.

Lemma 2.1. The following identity holds.

(σµν)
γ

α ϵγβ + (σµν)
γ

β ϵαγ = 0 . (2.1)

Proof. This should be quite straightforward. First you should use the definition of σµν ,

σµν =
i

4
(σµσ̄ν − σν σ̄µ) . (2.2)

Now we use the following identities,

(σ̄µ)α̇α = −ϵαβ (σµ)ββ̇ ϵ
β̇α̇ (2.3)

ϵαβ = ϵβα (2.4)

to show that Eq. (2.1) holds true. See Proposition 1.39 in [4] for details.

This is a non-trivial result that you should explicitly prove in your attempt! Otherwise I will treat the
attempt to be invalid.

2.2 Question 2 - Superconformal algebra

In this question we revisit the superconformal algebra and compute some commutation relations of the
superconformal algebra. The main point of this question is really just to get you to be comfortable
with manipulating (super-)conformal algebraic expressions. There are in fact two main points I would
like to cover in more detail.

Dilatation generator and Scaling dimensions

In part (a) most of you struggled to find the commutation of the dilatation generator D with the
Poincaré and superconformal supercharges QI

α and SI
α, namely,

[D,QI
α] =

i

2
QI

α , (2.5)

[D,SI
α] = −

i

2
SI
α . (2.6)

The key point here is to realise that the only non-trivial identity is the super-Jacobi identity so we will
use that to derive the expressions. You should be able to realise that from dimensional considerations
and matching the spinor indices (Lorentz representations) on both sides that we must have,

[D,QI
α] = iλIJQJ

α , (2.7)
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where λI ∈ C a priori. Conjugating this gives,

[D, Q̄I
α] = −iλ̄IJQJ

α . (2.8)

Now you can use the Jacobi identity - evaluating on both sides will eventually allow you to conclude
that λIJ = 1

2δ
IJ with no imaginary part 1. This is the same with the SI

α with just the opposite sign.

Central Charge

In part (b) you are asked to show that the central charges in the superconformal algebra must vanish.
The key idea here is to use the fact that the central charge is the generator of the central extension of
the algebra and therefore commutes with all elements,

[X,Z] = 0, ∀X ∈ L . (2.9)

Hence we must have [D,Z] = 0. I will leave you with using the Jacobi identity to further show that
Z = 0 identically in the superconformal case.

The rest of the question is just algebraic manipulations which I don’t really have anything more to say.

2.3 Question 3 - Massless supermultiplets

Massless multiplets are important in constructing the low-energy spectrum of supersymmetric theories.
There are three main things to note.

Degeneracy of states

Recall that we generate the massless supermultiplet by starting with the Clifford vacuum 2 |Ωλ⟩ with
helicity λ. We then repeatedly hit the Clifford vacuum with raising operators to generate the entire
multiplet. The key point of this question is to note that the degeneracy of the states of helicity λ+ 1

2n,

where n is the number of fermionic generators acted on the Clifford vacuum, is
(N
n

)
for N -extended

supersymmetry. Many of you have loosely argued that
∑

n even

(N
n

)
= 1

2

∑
n

(N
n

)
without a consistent

argument. The quickest way, instead, is to realise that,

0 =
N∑
n=0

(
N
n

)
(−1)n = (1 + (−1))N , (2.10)

using the binomial theorem, and realising that (−1)n is indeed the eigenvalue of the fermionic number
operator (−1)F acted on each level (up to a sign) so the above expression effectively captures the index
nB − nF .

Multiplets as representations of U(N )

The next point to note is how the multiplet content at each level forms a representation of the maximal
R-symmetry of the extended supersymmetry algebra. First recall in four-dimensions the maximal
R-symmetry group of the N -extended SUSY is U(N ) (a priori). The particles on each level of the
multiplet then furnish the antisymmetric part of the Clebsch-Gordan decomposition of products of
fundamental representations, as they are generated by fermionic operators which algebraic structure is
isomorphic to the exterior algebra 3. In particular, we can use tensor notations to indicate the particles
in a multiplet 4. You can read §6.3 for a more detailed discussion.

There is a subtlety however. The 4d R-symmetry group is not always the full U(N ) group. In the case
N = 2, the R-symmetry group is in fact,

U(2)R ∼= U(1)R × SU(2)R , (2.11)

1In fact, the eigenvalues of the dilatation operator gives you the scaling dimensions which are real.
2Note that the Clifford vacuum here is not a vacuum in the usual QFT-sense. The Clifford vacuum is only the lowest

weight state in the super-Poincaré algbera, and is not necessarily the state with minimal energy.
3Using Young diagram notation, the particles will be represented by irreps corresponding to columns of boxes. The

number of boxes corresponds to the number of raising operators acted on the Clifford vacuum (i.e. level in the multiplet).
4You should have learnt this in Groups and Representations, see Andre’s lectures notes.
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and for N = 4, the R-symmetry group is SU(4). The reason for the latter is because the fermionic fields
actually realise the spinor representation of Spin(6) and Spin(6) ∼= SU(4). The fact the U(1) subgroup
of U(N ) R-symmetry is sometimes not well-explained - under CPT-conjugation, the multiplet maybe
self-conjugate and therefore the U(1) part of the full R-symmetry group coincides with the helicity group
(u(1) ∼= so(1, 1)) and therefore plays no important role. This is, for example, realised for N = 4, 8 cases,
so the R-symmetry group is sometimes instead listed as SU(4) and SU(8) respectively.

CPT-completion of 4d N = 3 vector multiplet

The second part of the question asks you to compute the four-dimensional N = 3 multiplet with the
Clifford vacuum |Ω−1⟩. Now if you start with the Clifford vacuum

∣∣Ω−1/2

〉
instead, you will get the CPT-

conjugate of the first multiplet. Therefore after CPT-completion the N = 3 multiplet doubles in size,
and you can check as a part of the question that it exactly matches theN = 4 hypermultiplet (generated
from |Ω−1⟩). Therefore by convention this CPT-completed supermultiplet is referred to as the N = 4
multiplet and the N = 3 multiplets are forgotten. The decomposition actually occurs in general for
higher extended supersymmetric multiplets - in general they can be expressed as compositions of lower
multiplets. So as far as non-gravitational theories are discussed, the N = 3 multiplets are typically
neglected.

2.4 Question 4 - Massive supermultiplets

I don’t really have a lot to say about this question - this is just standard irrep constructions that you
should be able to find in most supersymmetry textbooks. The only thing I would comment on would
be how to write down the states at the second-level. Using the notation

a(k)α =
1√
2m

Q(k)
α , a(k)†α =

1√
2m

Q̄
(k)
α̇ , (2.12)

we can generate the particles at the second-level by acting two fermionic operators. In particular, since
we have defined the α = 1 operator to raise the spin by a half, spin-0 states at level two should have
the form

ϵαβ
(
a
(k)
β

)† (
a(l)α

)†
|Ω0⟩ , (2.13)

with the epsilon ensuring that the particle generated is indeed an irrep. On the other hand the spin-1
particles at the same level have the form

Skl
[(
a
(k)
2

)† (
a
(l)
1

)†]
|Ω0⟩ , (2.14)

with Skl the symmetric operator acting on the indices k and l. Most of you didn’t explicitly write this
and I would imagine if you are forced to write this in an exam you would miss the (anti-)symmetrising
factors so I have included them here.

3 CFTs and SCFTs

We have discussed the SCFT algebra in the lectures as an extension of the SUSY algebra. Let us try
and understand what the algebra means in very brief terms.

3.1 Conformal Field Theories

Here I will briefly review what a conformal field theory is. Some good references include [5, 6].

Consider the space R1,n−1 with flat metric gµν of signature (p, q) and the line element ds2 = gµνdx
µdxν .

The conformal group is the subgroup of coordinate transformations that leaves the metric invariant
up to a scale factor,

gµν 7→ Ω(x)gµν(x) , (3.1)
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which are angle-preserving transformations. The infinitesimal coordinate transformations are generated
by xµ 7→ xµ + ϵµ, which gives,

ds2 7→ ds2 + (∂µϵν + ∂νϵµ) dx
µdxν , (3.2)

where

∂µϵν + ∂νϵµ =
2

d
(∂ · ϵ) ηµν . (3.3)

For the dimensions d ≥ 3, we have to lowest order in x the generators listed in Table 3.1. The group then

ϵµ x′ Operator Name

aµ x+ a Pµ Translation
ωµ

νxν Λx Mµν Lorentz
λxµ λx D Dilatation

bµx2 − 2xµb · x x+bx2

1+2b·x+b2x2 Pµ Special Conformal

Table 3.1: Table of the generators of the conformal group in d ≥ 3. The first two columns give
the infinitesimal and full coordinate transformations respectively, and the last two columns give the
corresponding operator/generator and its name.

has dimension 1
2(d+2)(d+1). The conformal group for Rm,n is isomorphic to the group SO(m+1, n+1);

the inversion being an additional discrete generator not continuously connected to the identity. It is the
isometry group of the lightcone in d = m+n dimensions. The Lie algebra so(m+1, n+1) is generated
by the operators/generators listed in Table 3.1, with the non-Poincaré generators having the following
non-trivial commutation relations,

[Mµν ,Kρ] = gνρKµ − gµρKν , (3.4)

[D,Pµ] = Pµ , (3.5)

[D,Kµ] = −Kµ , (3.6)

[Kµ, Pν ] = 2 (ηµνD −Mµν) . (3.7)

In particular, the dilatation generator D generates the abelian Lie subalgebra so(1, 1) and therefore
all other generators have a weight under it. This weight is known as the scaling dimension, with
translations and special conformal transformations having weights +1 and −1 respectively. In radial
quantisation, the dilatation generator D acts as the Hamiltonian and the states living in the system will
be characterised by its scaling dimension and its SO(d) spin. Time translations are therefore generated
by dilatation [7]. We are not going into the details here, but to summarise; the unitary representations
of the conformal group are generated with the highest weight state (primary state) defined as

Kµ |[L]∆⟩ = 0 (3.8)

with Kµ acting as the lowering operator. Similarly, the descent states are generated by acting the
primary state with Pµ and Lorentz generators. For the details see for example [8].

Two things to note here. Firstly, the case for d = 2 is a bit more complicated. The conformal group
of the Euclidean plane for example is the group SO(3, 1) of Möbius transformations. This is a finite
group, although looking at the Lie algebra, we will see that there is an infinite set of conformal Killing
fields, which gives an infinite number of independent constraints 5. For the conformal group of R1,1 this
is indeed infinite as a group.

Another subtlety comes from a ‘common’ misconception with Weyl transformations which has the form,

gµν 7→ Ω(x)gµν . (3.9)

Here we note that a Weyl transformation is a physical change of the metric and has nothing to do
with coordinate transformations, where as a conformal transformation is by definition a coordinate
transformation. One has to be careful with such a distinction in quantisation in string theory.

5This is the origin for the claim that the 2d conformal group is infinite, see §2.4 of [6] for a detailed discussion.
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3.2 Superconformal Symmetry

We now discuss superconformal symmetries in very brief terms. The symmetry algebra of SCFTs
contain both the conformal algebra so(d, 2) and a supersymmetry algebra involving the supercharges
Q. To complete the algebra one must also include the supercharges S, where the scaling dimensions of
Q and S are 1

2 and −1
2 respectively. Similarly to before, we can define the irreps of the superconformal

algebra in the radial quantisation scheme with Kµ acting as the lowering operators and mirroring the
construction of irreps of super-Poincaré group with the superconformal primary defined to be the
state annihilated by K, S and S̄. For the details, please refer to [8, 9].

4 Induced Representations

Induced representations are a key part to Wigner’s Classification. Here we provide a quick review of
the method.

4.1 Set-up

We already know what happens when we want to restrict a representation of G to a subgroup H of G
- this is how branching rules arise. The key idea of an induced representation is to do the inverse - to
generate a representation for a bigger group G given a representation of a subgroup H ⊂ G.

Let us assume we are given a representation ρ : H → GL(V ) where V is a vector space and H is a
subgroup of G, where for h ∈ H,

v
h7−→ ρ(h)v, v ∈ V . (4.1)

We consider the cosets G/H and represent the each coset with an element gi such that the coset [gi] is
defined as,

[gi] = {g ∈ G | gi = gh, h ∈ H} . (4.2)

Then, for any g ∈ G, we have,
ggi = gjh (4.3)

for some h ∈ H. The number of cosets is N . We define the representation space as the product
G/H × V with

vi = ([gi], v) ∈ G/H ⊗ V , (4.4)

such that
vi = ([gi], v)

h7−→ ([gj ], ρ(h)v) = vj , (4.5)

under the action of h ∈ H. The representation space is therefore isomorohic to the N -fold tensor
product V ⊗N . In the space where we permute the N -copies of V s, the representation matrices for the
induced representation can then be given by N ×N matrices with elements,

ρji(g) =

{
ρ(h), g−1

j ggi = h ∈ H
0, otherwise

(4.6)

You can show that this construction indeed leads to a representation (it satisfies group homomorphism
ρ(g)ρ(g′) = ρ(gg′)). The dimension of the induced representation of G is N×dim ρH . As a sanity check,
if H = {e}, you should check that the induced representation is identical to the regular representation
for finite groups. So the induced representation is in fact in general reducible.

4.2 An example - dihedral group Dn

Let us illustrate the construction of induced representations using the dihedral group Dn. Recall that
the dihedral group Dn is generated by elements a and b where,

Dn =
{
a, b
∣∣ an = b2 = e, ab = ban−1

}
. (4.7)
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Let’s choose H to be the abelian subgroup Zn generated by the elements a, so we have one-dimensional
representations labelled by k with

v
a7−→ e

2πki
n v . (4.8)

The next step is to look at the cosets Dn/Zn. In fact there are two distinct ones labelled by i = 1, 2
where we take g1 = e and g2 = b to be the representatives. We see that under the action of a in Dn

the elements v1 = (e, v) and v2 = (b, v) will transform as

(v1, v2)
a7−→
(
e

2πki
n v1, e

− 2πki
n v2

)
, (4.9)

but note that since acting b changes the coset but the corresponding element h = g−1
j ggi does not exist

the representation only acts on the first coordinate, leaving us with 6

(v1, v2)
b7−→ (v2, v1) . (4.10)

Let us write v⃗ = (v1, v2) to be the representation space V ⊗2. Then we have,(
v1
v2

)
a7−→ Ak

(
v1
v2

)
=

(
e

2πki
n 0

0 e−
2πki
n

)(
v1
v2

)
, (4.11)

(
v1
v2

)
b7−→ B

(
v1
v2

)
=

(
0 1
1 0

)(
v1
v2

)
. (4.12)

We see that the matrices An
k = 1, B2 = 1 and AkB = BAn−1

k . This gives a two-dimensional represen-
tation of Dn for each k. Now we consider the following cases.

n odd

In this case we see that k = 1, ..., n−1
2 gives two inequivalent two-dimensional irreps. For k = 0, we have

A = 12 so we can apply an orthogonal transformation to diagonalise B - giving two 1d irreps. This is
listed in Table 4.1.

Irrep Case Rep of (ar, arb)

R1,1 k = 0 (1, 1)
R1,2 k = 0 (1,−1)
R2,k k = 1, ..., n−1

2 (Ar
k, A

r
kB)

Table 4.1: Irreps of Dn constructed from induced reps method for odd n.

n even

Same as in the odd case, we see that k = 1, ..., n−1
2 gives two inequivalent two-dimensional irreps. For

k = 0, we have A = 12 so we can apply an orthogonal transformation to diagonalise B - giving two 1d
irreps. There is an additional case with k = n

2 where A = −12 so we have two more 1d irreps. All of the
irreps are listed in Table 4.2. Indeed, the number of representations match the number of conjugacy
classes. We can even choose

O =
1√
2

(
1 1
i i

)
(4.13)

to get

RAkR
−1 =

(
cos
(
2πk
n

)
− sin

(
2πk
n

)
sin
(
2πk
n

)
cos
(
2πk
n

) ) , RBR−1 =

(
1 0
0 −1

)
. (4.14)

5 Wigner’s Classification

In this section we review the classification of irreducible unitary positive energy representation H of the
Poincaré group Pn. The construction is first discussed by Wigner [10] and we provide a quick summary
here.

6If you need more steps then see v1 = (e, v)
b7−→ (b, v) = v2 and vice versa.
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Irrep Case Rep of (ar, arb)

R1,1 k = 0 (1, 1)
R1,2 k = 0 (1,−1)
R1,3 k = 1

2 ((−1)r, (−1)r)
R1,4 k = 1

2 ((−1)r,−(−1)r)
R2,k k = 1, ..., n−1

2 (Ar
k, A

r
kB)

Table 4.2: Irreps of Dn constructed from induced reps method for even n.

5.1 Notations

We set V = R1,n−1 be a vector space with linear coordinates x0, ..., xn−1 and the Lorentzian metric,

g = (dx0)2 − (dx1)2 − ...− (dxn−1)2 . (5.1)

We set x0 = ct, where c is the speed of light. Minkowski spacetime Mn is the affine space which
underlies V . The lightcone is the cone traced out by the vectors with zero norm known as lightlike
vectors. Vectors inside and outside the lightcone are termed timelike and spacelike respectively and
have positive and negative norms respectively. The group of isometries of V is the orthogonal group
O(1, n− 1), which has four components distinguished by the determinant ±1 and whether the forward
lightcone is mapped to itself (or to the backward one). The identity component is known as the proper
orthochronous Lorentz group SO+(1, n − 1) and has a double cober Spin(1, n − 1). The group of
isometries ofMn includes the subgroup of translations T of V , and that quotienting by T is isomorphic
to O(1, n− 1). The Poincaré group Pn is the double cover of the identity component of the group of
isometries, fitting into the exact sequence,

0→ T → Pn → Spin(1, n− 1)→ 0 . (5.2)

We can alternatively write,
Pn = Spin(1, n− 1)⋉ T (5.3)

5.2 Wigner’s Classification

Irreducible unitary representations of the Poincaré group are uniquely characterised by two parameters,
mass and helicity, so we consider the two one-by-one.

Mass

First restrict the representation to the translation subgroup T . The restricted representation of T ↪→ Pn

decomposes into a direct sum of irreducible unitary representations. Since T is abelian, these unitary
irreps are one-dimensional and are specified by characters,

χ : T → U(C) = S1 . (5.4)

We label these one-dimensional irreps by a dual four-vector pµ ∈ T ∗ known as a 4-momentum,

χp(x) = eip·x, p ∈ T ∗ (5.5)

The mass is defined as the magnitude of the four-momentum vector,

m2 = p · p . (5.6)

In other words, the unitary irreps are defined by the elements of the Pontryagin dual of T . The action
of Pn on the translation group T can be deduced via the Pontryagin isomorphism,

χp·g = χp ◦ g (5.7)

which sends p 7→ p · g of the same mass.

Spin and helicity
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Now restrict the irrep H of Pn to a rep of V , which decomposes into a direct sum of one-dimensional
representations indexed by 4-momenta.

H =

ˆ
p∈W

Vp , (5.8)

here W indexes the set of infinitesimal characters p permuted by the action of SO+(1, n − 1) on V ∗,
following the discussion p 7→ p◦g. The representationH is irreducible, so p form an orbit of the action (of
the ‘Lorentz group’). Note that m2 is constant on each orbit, and there are two orbit types - massless
m = 0 and massive m > 0 representations. In two-dimensions the massless reps further break to
left-moving and right-moving reps. This transitive action on W defines a connected groupoid with
objects p ∈ W and morphisms p 7→ p · g. The map p 7→ Vp then defines a linear representation of this
groupoid and the action of Pn on irrep H can be determined with this groupoid representation.

The connectedness of the groupoid means the representation is determined by the restriction to any of
the automorphism groups Aut(p) in the groupoid, so we have the identification of W as a homogeneous
space,

W = Pn/Aut(p) , (5.9)

so then V acts trivially on Vp. Define the little group, Lp, as

0→ V → Aut(p)→ L(p)→ 1 (5.10)

such that
Aut(p) = Lp ⋉ V . (5.11)

The little group Lp ⊂ Spin(1, n − 1) is the reductive part of the compact stabiliser subgroup of p.
Since the representation H of Pn is obtained by constructing a homogeneous complex hermitian vec-
tor bundle over the orbit, which can be extended by the direct integral construction on the groupoid
representation if the action of Lp on Vp is known. This is otherwise known as the method of induced
representations. For H to be irreducible, the rep on Lp must also be an irrep. Therefore our problem
reduces to finding irreps of the little group Lp in the two types or orbits.

The mathematical basis of the construction is the functional-equivalent construction for the induced
representation method illustrated for finite groups. Here in particular we focus on unitary represen-
tations and therefore the representation space H is the space of integrable sections, a subspace of the
total space of sections of the bundle P ×ρ V → G/H where G is the Poincaré group Pn and H is the
Lorentz group. The little group method ultilises the following construction. We denote U to be the
unitary induced representation of Pn on the Hilbert space H of integrable sections and consider the
restriction of U to the abelian subgroup T . Let t = exp a · T with z0 denoting the identity coset, then,

Ut · ψ(z0) = D(t) · ψ(z0) = α(t) · ψ(z0) , (5.12)

where α(t) = exp a · α∗(T ) = eia·p0 . Then,

(Ut · ψ) (z) = eia·Λ(σ(z)
−1)·p0 · ψ(z) , (5.13)

with Λ being the adjoint representation of some element of the Lorentz group. Here σ indicates the
section and z a point in the homogeneous space Spin(1, n − 1)/L(α), where L(α) is the little group.
Define p = Λ(σ(z)−1) · p0, and we have identified between the points z ∈ Spin(1, n − 1)/L(α) and the
orbit of p0 under the adjoint action of Spin(1, n−1). In particular since p0 is the fixed point of this orbit
the identification is one-to-one. Therefore, each representation of T occurring in U will be uniquely
indexed by the points in Spin(1, n − 1)/L(α), z ↔ p. The Mackey direct integral decomposition of a
representation gives a more functional-analytical way of looking at this identification. We break up,
similar to the construction above, the Hilbert space of integrable sections as the direct integral,

H =

ˆ
Spin(1,n−1)/L(α)

dν(p)H(p) , (5.14)

where on each H(p), Ut is e
ia·p × 1. This is the spectral theorem for a commuting family of self-adjoint

operators - since U(T ) consists of dim(T )-families of commuting unitary operators, this decomposes H
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over the spectrum with each individual component shown to be in 1-1 correspondence with points of
Spin(1, n− 1)/L(α). We then show that this representation is irreducible by proving that any bounded
linear operator commuting with the representation U of Pn is by Schur’s Lemma a multiple of the
identity.

The result of the above mathematical discussion implies that one can consistently obtain the unitary
irreducible representations of the Poincaré group using the little group method. The irreps will be
characterised by the quadratic Casimirs of P 2 and W 2, the latter of which defined as,

Wµ =
1

2
ϵµνρσJ

νρP σ (5.15)

known as the Pauli-Lubański pseudovector. This characterises the spin/helicity of the irrep.

We now separate the discussion into two distinct cases.

Massive Case m > 0

Fix the mass as m. We can take the basepoint p = (m, 0, ..., 0) which gives the stabiliser subgroup
(little group) as Spin(n− 1). A massive particle then corresponds to an irrep of Spin(n− 1) as in the
non-relativistic case, with the Hilbert space being

H = L2(Rn−1, r) , (5.16)

where r is an irrep of Spin(n− 1). The spin of a representation r of Spin(n− 1) is defined as follows.
Fix a 2-plane in Rn−1, and consider the double cover Spin(2) ⊂ Spin(n− 1) of rotations in that plane
which fixes the 2-plane. The irrep r decomposes into a sum of one-dimensional irreps and Spin(2) as by
λ 7→ λ2j with λ ∈ Spin(2) and j a half-integer. The spin is then defined as the largest |j| that occurs
in the decomposition. When n = 4, Spin(3) ∼= SU(2) so |j| simply labels the irreps of SU(2).

Massless Case m = 0

We consider the basepoint (1, 1, 0, ..., 0). The stabiliser subgroup in this case is the double cover of
orientation-preserving isometries of an (n− 2)-dimensional Euclidean space. The helicity λ of the irrep
is the label j associated to the action of Spin(2) ⊂ Spin(n− 2).

6 Central Charges

In this section we review how the central charges arise as a central extension of the super-Poincaré group.
We first provide a lightning review of the super-Poincaré group before discussing central charges and
BPS states. The main references for this section is [1, 11, 12]. See [13] for some discussions on the
mathematical background.

6.1 The super-Poincaré group

Recall the Minkowski spacetime Mn is the affine space of the underlying vector space V of translations
with Lorentzian metric, and that the Poincaré group Pn is a metric-preserving cover of the component
of affine symmetries of Mn connected to the identity. To define a super-spacetime, we will fix a real
spin representation S with dimensions s, which has the symmetric pairing7,

Γ̃ : S ⊗ S → V . (6.1)

The related pairing8 Γ : S∗⊗S∗ → V is used in the supersymmetry algebra. We choose Im(Γ), Im(Γ̃) ⊂
C where C ⊂ V is the positive cone of timelike vectors, and then note that Γ and Γ̃ are non-degenerate.
Choosing a basis of V and S as {Pµ} and {Qa} respectively, we have,

Γ(Qa, Qb) = Γµ
abPµ . (6.2)

7The existence of such a symmetric equivariant pairing for real spin representations is unique to the Minkowski signa-
ture, see Notes on Spinors in [13].

8The Γ is uniquely determined by Γ̃ in Lorentzian signature spin representations.
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The Clifford relation between Γ and Γ̃ is expressed by,

Γµ
abΓ̃

νbc + Γν
abΓ̃

µbc = 2gµνδca . (6.3)

We introduce the Z2-graded algebra,
L = V ⊕ S∗ , (6.4)

with V central and the nontrivial odd bracket,

{Qa, Qb} = −2Γµ
abPµ . (6.5)

The underlying supermanifold (affine space) for the corresponding super Lie group is then the super-
Minkowski spacetime,

Mn|s =Mn ×ΠS∗ , (6.6)

where Π denotes the parity-reversed vector space with the even and odd summands reversed 9.

We typically pick the coordinate basis on V and ΠS∗ as xµ and θa respectively, giving the global
coordinates on Mn|s. The action of the Lie algebra L on Mn|s gives rise to left-invariant and right-
invariant vector fields with basis {∂µ, Da} and {∂µ, τQa} respectively 10. We write,

Da =
∂

∂θa
− Γµ

abθ
b∂µ (6.7)

τQa =
∂

∂θa
+ Γµ

abθ
b∂µ (6.8)

with non-trivial brackets 11

[Da, Db] = −2Γµ
ab∂µ , (6.9)

[τQa , τQb
] = 2Γµ

ab∂µ . (6.10)

(6.11)

Note that since right-invariant vector fields give rise to left actions 12, τQa generates an infinitesimal
left action of Pn|s.

The super Poincaré algebra is the graded Lie algebra,

pn|s = (V ⊕ so(V ))⊕ S∗ , (6.12)

its even part just the usual Poincaré algebra. The super Poincaré group is defined as Pn|s =
Spin(V )⋉ exp(L) or equivalently,

1→ exp(L)→ Pn|s → Spin(V )→ 1 . (6.13)

There are two concepts connected to Pn|s.

1. There may be a symmetric pairing
S∗ ⊗ S∗ → Rc , (6.14)

i.e. Sym2S∗ contains copies of the trivial representation. This leads to the extension of a new-super
Lie algebra by adding for any c′ ≤ c,

p̃n|s =
(
V ⊕ so(V )⊕ Rc′

)
⊕ S∗ . (6.15)

9This is consistent with the sign rule where we introduce a sign when odd elements are interchanged and treat all
structures as even.

10∂µ in both as V is central.
11The brackets of the left-invariant Da are given by the ones as in L but the right-invariant ones have a sign difference.
12This is because when the one-parameter subgroup generated by a vector field v acts on the left, say g 7→ etv · g, after

differentiation g acts on the right of the vector field as

dg′

dt

∣∣∣∣
t=0

= vetvg = v · g

so the vector field generated by v gives vg at g ∈ G. This means that the vector field is in fact right-invariant.
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Since we can write
1→ Rc′ → p̃n|s → pn|s → 1 , (6.16)

this is an extension and in particular Rc′ is abelian with its image being in the centre of p̃n|s

so such construction is known as a central extension. The generators of Rc′ are the central
charges 13.

2. There may exists outer automorphisms of pn|s which fix the Poincaré algebra (so they transform
the fermionic generators). These are infinitesimal R-symmetries and the connected group via
exponentiation is the R-symmetry group, which is compact 14.

6.2 Central Charges and BPS states

We have shown that the extended SUSY algebras can be extend by adding a central charge.

{Qa
α, Q

†
α̇b} = 2σµαα̇Pµδ

a
b , (6.17)

{Qa
α, Q

b
β} = 2

√
2ϵαβZ

ab , (6.18)

{Q†
α̇a, Q

†
β̇b
} = 2

√
2ϵα̇β̇Z

∗
ab , (6.19)

with ϵ = iσ2 as before. The central charge matrix Zab is antisymmetric in a and b and can be skew-
diagonalised to N/2 eigenvalues. For the case N = 2, we have only one Z. It is possible to define the
operators,

Aα =
1

2

[
Q1

α + ϵαβ
(
Q2

β

)†]
, (6.20)

Bα =
1

2

[
Q1

α − ϵαβ
(
Q2

β

)†]
, (6.21)

which gives the algebra with non-trivial commutators

{Aα, A
†
β} = δαβ(M +

√
2Z) , (6.22)

{Bα, B
†
β} = δαβ(M −

√
2Z) , . (6.23)

Let us impose the condition that the irreducible representations of the algebra must be unitary with
semi-definite positive norm, which requires the unit norm state |M,Z⟩ labelled by mass M and central
charge Z,

||B†
α |M,Z⟩ || ≥ 0 =⇒M ≥

√
2Z . (6.24)

This is a very strong constraint with two immediate consquences.

• For massless states Z = 0.

• For massive states that satisfies exactly the equality M =
√
2Z, the state is annihilated by

half of the supercharges. The multiplet of the state is reduced to a much smaller one - this is
known as the short multiplet where its normal M >

√
2Z counterpart is known as the long

multiplet. The construction of the short multiplet follows the normal procedure of generating
supersymmetric multiplets, in particular the N = 2 massless multiplet now reduces to the N = 1
massive multiplets generated from the same Clifford vacuum15.

In particular the massive states where M =
√
2Z are known as BPS states. These are the states with

exactly half of the supersymmetry of the system, and are interestingly related to non-perturbative
effects of the system.

13These already arise in classical field theories due to the symplectic structure. Namely if pn|s is the Lie algebra of
symmetries of some theory then the Lie algebra of observables is in general a central extension.

14The infinitesimal R-symmetries act in a quantum theory as automorphisms of the symmetry algebra and are repre-
sented projectively on the Hilbert space of the theory.

15For example, the massless N = 2 hypermultiplet and vector multiplet is mapped to the massive N = 1 chiral and
vector multiplet respectively.
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6.3 Multiplet content as R-symmetry representations

Since R-symmetry is an internal symmetry that effectively rotates the fermionic charges into one-
another, the massless and massive supermultiplets of extended supersymmetry have states labelled by
R-symmetry. In particular due to the oddness of the generators (QI

α̇)
† the states in a multiplet can be

represented as irreducible antisymmetric representations of the R-symmetry.

To illustrate this let us look at the N = 4 massless supermultiplet generated from the Clifford vacuum
|Ω−1⟩ as an example. The states generated by the operators 16

(
aI1
)†

=
1√
4E

(
QI

1̇

)†
(6.25)

will be the multiplet as represented schematically in Table 6.1. For example, we can write the states

state (schematic) helicity R tensor

|Ω−1⟩ −1 1 T
a† |Ω−1⟩ −1

2 4 TI
a†a† |Ω−1⟩ 0 6 TIJ
a†a†a† |Ω−1⟩ 1

2 4 T I

a†a†a†a† |Ω−1⟩ 1 1 T

Table 6.1: A list of the states, their helicities, together with their irrep in the R-symmetry group SU(4) for the
N = 4 massless supermultiplet. Here I have represented the state using tensor methods in representation theory.
The states are schematically illustrated and do not actually refer to the actual form of the state.

of the form a† |Ω−1⟩ in the fundamental of SU(4), the R-symmetry group, as a vector,

a† |Ω−1⟩ =


(
a11
)† |Ω−1⟩(

a21
)† |Ω−1⟩(

a31
)† |Ω−1⟩(

a41
)† |Ω−1⟩

 (6.26)

with the subscript labelling the extended SUSY label. The state then transforms under R-symmetry
in the fundamental a† |Ω−1⟩ → Ua† |Ω−1⟩ where U ∈ SU(4). This is represented by the Young table:

The second level is generated by two anticommuting operators and therefore must furnish the antisym-
metric representation represented by the Young diagram

a†a† |Ω−1⟩ ←→ (6.27)

so hence the irrep 6. This generalises to multiplets in other extended supersymmetric theories.

References

[1] J. Terning, Modern supersymmetry: Dynamics and duality. 2006.

[2] J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton, NJ, USA: Princeton University
Press, 1992.

[3] M. Bertolini, Supersymmetry - From the basics to exact results in gauge theories. World Scientific,
12 2024.

16Here I have used the notation of the lectures notes where I go to the frame pµ = (E, 0, 0, E), so the non-trivial operator
relation is {QI

1, Q
J†
1̇
} = 4EδIJ .

13



[4] H. J. W. Muller-Kirsten and A. Wiedemann, SUPERSYMMETRY: AN INTRODUCTION WITH
CONCEPTUAL AND CALCULATIONAL DETAILS. 7 1986.

[5] P. H. Ginsparg, “APPLIED CONFORMAL FIELD THEORY,” in Les Houches Summer School
in Theoretical Physics: Fields, Strings, Critical Phenomena, 9 1988.

[6] M. Schottenloher, A mathematical introduction to conformal field theory, vol. 43. 1997.

[7] S. Rychkov, EPFL Lectures on Conformal Field Theory in D>= 3 Dimensions. SpringerBriefs in
Physics, 1 2016.

[8] L. Eberhardt, “Superconformal symmetry and representations,” J. Phys. A, vol. 54, no. 6,
p. 063002, 2021.

[9] C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Multiplets of Superconformal Symmetry in
Diverse Dimensions,” JHEP, vol. 03, p. 163, 2019.

[10] E. P. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group,” Annals Math.,
vol. 40, pp. 149–204, 1939.

[11] D. S. Freed, Five lectures on supersymmetry. Providence, USA: AMS, 1999.

[12] D. S. Freed, “Classical field theory and supersymmetry,” pp. 61–161, 2006.

[13] P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and
E. Witten, eds., Quantum fields and strings: A course for mathematicians. Vol. 1, 2. 1999.

14


	Class 2 Summary
	Problem Sheet 2 Feedback
	Question 1 - Super Jacobi Identities
	Question 2 - Superconformal algebra
	Question 3 - Massless supermultiplets
	Question 4 - Massive supermultiplets

	CFTs and SCFTs
	Conformal Field Theories
	Superconformal Symmetry

	Induced Representations
	Set-up
	An example - dihedral group Dn

	Wigner's Classification
	Notations
	Wigner's Classification

	Central Charges
	The super-Poincaré group
	Central Charges and BPS states
	Multiplet content as R-symmetry representations


