
Prepared for submission to JHEP

Groups and Representations Tutorial Class

Supplementary Notes

Lucas T. Y. Leunga

aRudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1

3PU, UK

E-mail: lucas.leung@physics.ox.ac.uk

Abstract: This set of notes is my attempt on summarising and expanding on the topics

and discussion points made during the tutorial classes. These only act as a set of sup-

plementary notes and are not designed to replace the course notes or as solutions to the

problem sheets. You should not share these notes without permission.

mailto:lucas.leung@physics.ox.ac.uk


Contents

1 General References, Articles and Books 1

2 Elements of basic group theory 2

2.1 Subgroup test 2

2.2 Permutation groups 2

3 More on Group Algebras 4

3.1 Groups algebras - Definitions 4

3.2 FG-modules and representations 6

3.3 Weddenburn-Artin Theorem 11

4 Character tables 18

4.1 Constructing the character table 19

4.2 Character orthogonality 19

4.3 Examples 21

5 Young Tableaux and Projectors 22

5.1 Young Diagrams and Tableaux 22

5.2 Projection Formulae 23

5.3 Young Tablaeux as Projectors 25

6 Spin Groups and Lie Algebra Isomorphisms 28

6.1 Universal Covers and Projective Representations 29

6.1.1 Universal Coverings 29

6.1.2 Projective Representations 30

6.2 Spins in Lorentz group 33

6.3 Clifford Algebras and Gamma Matrices 33

6.3.1 Constructing Clifford algebras 36

6.3.2 Z2-grading 38

6.3.3 Grading and exterior algebras 39

6.3.4 Clifford algebras as representations of sonC 42

6.4 Classification of Clifford algebras 45

6.5 Spinor Representations and Clifford Algebras 45

6.5.1 Pin and Spin Groups 45

6.5.2 Spinor Representations 48

6.5.3 Weyl, Dirac, Pauli and Majorana Spinors 49

6.5.4 Spin Structures 51

– i –



7 Correspondence between Lie Groups and Lie Algebras 52

7.1 Lie Brackets and Flows 52

7.2 The exponential map and BCH Formula 56

7.3 Injectivity and surjectivity of an exponential map 57

7.4 Functorial properties of exponential map 60

8 Tensor Methods and Young Diagrams 64

8.1 Tensor Irreps in GL(n) and SU(n) 64

8.2 Building irreps using invariant tensors 67

8.3 Irreducible Representations of Sn and Young Diagrams 68

8.4 Schur-Weyl Duality 71

8.5 Tensors and Young Diagrams 73

8.6 Clebsch-Gordon decomposition from Young tablaeux 76

8.7 Branching by index decomposition 78

8.8 Branching using Young tableaux 79

8.9 Branching with U(1) factors 80

8.10 Branching using Symmetries 84

8.11 SU(5) Matter Multiplet Branching 85

8.12 Proof of Schur-Weyl Duality 87

8.13 O(n) and SO(n) tensors 89

9 Complexification and Real Forms 93

9.1 The Killing Form 93

9.2 Complexification, Realification and Real Forms 95

9.3 Split Forms and Compact Real Forms 98

10 Cartan-Weyl Decomposition, Root Diagrams and Weight Diagrams 102

10.1 Metric tensor and coordinates 102

10.1.1 Root diagram coordinates 102

10.1.2 δ as half-sum of positive roots 103

10.2 Cartan-Weyl Decomposition - revisited 104

10.3 Weyl group and chambers 105

10.4 Calculating root diagrams 108

10.5 Weight diagrams 111

10.6 Projection matrices and branching 117

11 Subalgebras, Subgroups and Dynkin Diagrams 119

11.1 Subalgebras and Extended Dynkin Diagrams 119

11.2 Symmetry Breaking in Physics 123

12 Casimirs 126

12.1 Universal Enveloping Algebra 126

12.2 Casimirs and Invariant Tensors 127

– ii –



13 The Standard Model 130

14 Grand Unified Theories 132

14.1 SU(5) GUT Group 133

14.2 SO(10) GUT Group 135

15 The sequel: AQFT 137

A Module Theory 138

A.1 Semi-simple and simple modules 139

A.2 Direct sums 141

1 General References, Articles and Books

The canonical reference for the course is Fulton and Harris’ Representation Theory [1]. This

is a really good book for both mathematicians and theoretical physicists and it provides a

rigorous treatment to all the topics covered in the course. It might be, however, useful to

look elsewhere if this is a bit too mathematically rigorous for you.

But just in case you need more mathematical rigour — here are some books mainly catering

to mathematicians. For general algebra Dummit and Foote is a standard [2]. For finite

groups it might be helpful to look at James and Liebeck’s ‘Representations and Characters

of Groups’ [3]. For Lie algebras and Lie groups, have a look at Humphrey, Erdmann

or Hall [4–6]. For some differential geometry background, Lee’s ‘Introduction to Smooth

Manifolds’ [7] is a very good introduction and reference.

For physicist-oriented books, the best book is Georgi’s ‘Lie Algebras in Particle Physics’ [8].

I didn’t like it when I was doing the course 1, but I later found out it is one of the best books

on the subject! Fuchs and Schweigert’s ‘Symmetries, Lie algberas and Representations’ [9]

offers a comprehensive rigorous view on the subject which also has a lot of interesting topics

in it. Finally Costa and Fogli’s book is quite good as well [10] — I did use it for quite a

bit when I was learning the subject.

Throughout the notes I will cite the relevant references and articles. You should go look at

them if you want a bit more information on the topics I have selected here. My presentation

is nowhere coherent or formal enough — it is just the kind of style I like 2. I apologise if

there are any typos/mistakes in the notes but do email me if you spot them!

1Well, okay, the Symmetries, Particles and Fields course in Cambridge.
2It’s quite formal for most theoretical physicists. Sorry. I just like my weird sense of mathematical and

physical intuition so you will find comments dotted around... however, I must say that the current version

of notes is a lot more formal than most presentations you will find aimed at physicists.
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2 Elements of basic group theory

In the first class we mainly discussed finite groups and their representations. The main

references here are [1, 2]. In this section, I would like to highlight some important topics

that you might not have encountered as part of your undergraduate course, namely the

subgroup test and some facts about permutation groups.

2.1 Subgroup test

When marking I noticed a lot of you tried to show H ≤ G (H is a subgroup of G) by

showing all the axioms, namely: Closure, Associativity, Identity and Inverse 3. This is

generally not too helpful when you are trying to show a number of groups as subgroups of

a larger group - you will be doing the same tedious arguments again and again! So I want

to introduce a test here that will shorten the argument by a bit [11].

Theorem 2.1 (Subgroup Test). Let H be a non-empty subset of a group G. Then H is a

subgroup if and only if ∀h1, h2 ∈ H, h1h
−1
2 ∈ H.

Proof. The forward direction is obvious (from group axioms, check!). So let us show the

converse. Assume ∀h1, h2 ∈ H, h1h
−1
2 ∈ H. We see that e ∈ H, since hh−1 ∈ H. This also

shows that h−1 ∈ H. Now take h−1
2 ∈ H, so h1(h

−1
2 )−1 ∈ H, ∀h1, h2 ∈ H. This means H

is closed under the multiplication inherited from G. Associativity clearly descends from G,

so all axioms are satisfied.

In the exam I would clearly state I am using the subgroup test if I am using this theorem

— this is a trivial group theoretical result that you probably do not need to provide a proof

for.

2.2 Permutation groups

In Q3 of the first problem sheet we were asked about the conjugacy classes of S3. However,

a lot of you simply explicitly calculated that these are in fact the only conjugacy classes

of the group - this is doable for small finite groups, but in general not feasible for larger

groups. Some people stated the fact that the conjugacy classes are all defined by the cycle

type, but without proof. Here I want to show that this is true in general for Sn. First with

the following lemma.

Lemma 2.1. Let α, β ∈ Sn, α a k-th cycle (a1...ak). Then

βαβ−1 = (β(a1)...β(ak)) , (2.1)

i.e. conjugation does not change the cycle type.

Proof. Consider β(ai), then β
−1β(ai) = ai, α(ai) = ai+1 mod k, and

βαβ−1(β(ai)) = (β(ai+1 mod k)) . (2.2)

3Kit: By the way, it will be a great idea if you name these during an exam!
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Take bj ̸= ai, ∀i. Then α(bj) = bj and

βαβ−1(β(bj)) = β(bj) . (2.3)

So βαβ−1 fixes any number not in the form β(ai) for some i. Therefore, we deduce that

βαβ−1 = (β(a1)...β(ak)) . (2.4)

This lemma tells us that the conjugacy classes are determined by cycle type. In fact, the

cycle type uniquely determines the conjugacy classes. To see this we need:

Theorem 2.2. Every permutation is uniquely expressible as a product of disjoint cycles.

Proof. Given g ∈ Sn, the cyclic subgroup ⟨g⟩ ≤ Sn generated by g acts on some set

X = {1, ..., n} decomposes X into distinct orbits:

Ox =
{
gix | i ∈ Z

}
(2.5)

for choices of orbit representations of x ∈ X. For each x, let Nx be the order of g when

restricted to the orbit ⟨g⟩ · x and define the cycle

Cx =
(
x, gx, ..., gNx−1x

)
. (2.6)

Since distinct orbits are disjoint, the cycles are disjoint. Given y ∈ X, we choose an orbit

representation x such that y ∈ ⟨g⟩ · x. Then g · y = Cxy and g is the product of the cycles

Cx over the orbit representations x.

So now we have the theorem:

Theorem 2.3. The conjugacy classes of any Sn are uniquely determined by cycle type.

Proof. This follows immediately from Theorem 2.2 but now we are considering a product

of cycles (α in Theorem 2.2 is a single cycle)4.

We can think of this as follows - the conjugation simply relabels the numbers inside the

cycle when the element σ ∈ Sn is written in cycle notation. So the cycle type is just the

conjugacy class!

4If you want it more fleshed out here are the details: Write σ = α1...αl for σ ∈ Sn. Then for τ ∈ Sn, we

have

τστ−1 = (τα1τ
−1)...(ταlτ

−1) (2.7)

From Lemma 2.1, we have that ταiτ
−1 also a ki-cycle. Now for i ̸= j, αi and αj are disjoint and ταiτ

−1

and ταjτ
−1 are also disjoint since τ is injective. Therefore, τστ−1 are also separated into disjoint cycles.

To show uniqueness, we note that Theorem 2.2 states that every permutation can be uniquely described as

a product of disjoint cycles. Since this cycle type is unchanged under conjugation, the conjugacy classes

therefore uniquely correspond to all possible cycle types constructible in Sn.
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3 More on Group Algebras

In the lectures group algebras are defined in a really concise manner - it might be difficult

to really understand what it is though! Here I would like to highlight some facts about

group algebras and how they are constructed. In fact, this will also allow us to define

representations and present the proofs in a more concise manner.

This section is here mainly for your reference (and for your mathematical satisfaction)!

Therefore, this is entirely out-of-syllabus.

3.1 Groups algebras - Definitions

First recall the definition in the lecture.

Definition 3.1. The group algebra AG of group G is defined as the set of formal linear

combinations:

v =
∑
g∈G

v(g)g (3.1)

where v(g) ∈ C all g ∈ G are considered to be linearly independent.

This definition might appear to be a bit confusing - but if you look at it again this is

actually not too bad to work with. The group algebra is effectively like ‘a vector space’

with the group elements, labelled as {eg}, being the basis for this vector space. Let us

make this notion a bit more precise by recalling some definitions from elementary algebra5:

Definition 3.2. A ring R is a set with two binary operations (addition and multiplication)

such that the following statements are true.

(i) R is an abelian group with respect to addition.

(ii) Multiplication is associative and distributive over addition. i.e.

(xy)z = x(yz) (3.2)

x(y + z) = xy + xz , (y + z)x = yx+ zx (3.3)

(iii) For all x, y ∈ R, xy = yx.

(iv) There is an identity element ∃1 ∈ R such that for all x ∈ R, x1 = 1x = x. This

identity element is unique.

Definition 3.3. Let R be a ring. An R-module is an abelian group M on which R

acts linearly. More precisely, it is the pair (M,µ) where M is an abelian group and

µ : A × M → M is a mapping such that (writing µ(r,m) as rm for r ∈ R, m ∈ M)

the following axioms are satisfied.

(i) r(x+ y) = rx+ ry .

(ii) (r + s)x = rx+ sx .

(iii) (rs)x = r(sx) .

5I say elementary - this might not be if you haven’t seen these notions before! One can consult a basic

algebra book for details, say [2, 11].
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(iv) 1x = x .

A module is kind of like a vector space using rings as the ‘scalar’. If R = Z then the

conditions are immediately satisfied — the Z-modules are the same as abelian groups.

If R is a field K 6, then an R-module is just a K-vector space. Modules are therefore

generalisations of vector spaces when we work over an arbitrary ring. We also note the

following equivalent definition of a module (which will become important later).

Definition 3.4. An R-moduleM is an abelian group together with a ring homomorphism

R→ End(M) where End(M) is the ring of endomorphisms of the abelian group M .

So why do we need to know something about modules? It turns out that group algebra, or

FG-modules, turns out to be representations of G. This requires as bit more explanation.

Let’s start with a definition of FG-modules.

Definition 3.5. Let R be a commutative ring 7. An associative R-algebra (or an R-

algebra simply) is a ring S that is also an R-module such that the two additions (ring and

module) are the same operation and scalar multiplication satisfies:

r · (xy) = (r · x)y = x(r · y) . (3.4)

Equivalently, let f : R→ S be a ring homomorphism. Define a product

r · s ≡ f(r)s , (3.5)

with r ∈ R and s ∈ S. This definition of scalar multiplication turns S into an R-module.

The ring S equipped with this R-module structure is then an R-algebra.

There are a few more facts on module theory in Appendix A. In particular, we will need

the following definition.AN

Definition 3.6. A free R-module is one which is isomorphic to an R-module of the form⊕
i∈I

Mi , (3.6)

where each Mi
∼= R behaving as an R-module.

Again, looks quite complicated but the idea is simple. A free R-module is one that has

a basis - which is a subset of M being the generating set of M and also having linearly-

independent elements. This means that for some element in the free R-module x, there

exists unique non-zero elements ri ∈ R and mi ∈M such that

x =
∑
i

rimi . (3.7)

This is quite important - it means that you can effectively disentangle your complicated

module into simple R-modules. Now with all of these defined, let us now look at what a

group algebra is.

6We will use this notation for the rest of a section — if something is a field, it will be indicated by a

double-lined letter.
7This means the multiplication operation defined for the ring is commutative, i.e. xy = yx for x, y ∈ R.
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Definition 3.7. The group algebra R[G] of a group G over a ring R is the associative

algebra whose underlying R-module is the free module over R on the underlying set of G

and whose multiplication is given on these basis elements by group operation in G.

Let us unpack this definition - it looks a bit complicated. Firstly, there is an underlying

R-module. This means that we are kind of working with a vector space 8 of some-sort.

This underlying module is a free module - this means that any element x in this group

algebra can be uniquely written in the form

x =
∑
i∈I

rigi . (3.8)

This exactly matches up with what we have defined at the very start of the section (i.e.

in Andre’s notes). The group algebra is the ‘formal’ linear combination of group elements.

Now the second point - multiplication of these elements are given by the group operation

in G. Let us, for clarity, write the basis elements of the module as {eg} for the moment.

This warrants the following algebraic structure:

eg · eh = egh . (3.9)

So it is not actually that difficult — R[G] is kind of like a vector space with the following

structure. Writing

x =
∑
g∈G

rgeg (3.10)

y =
∑
h∈G

sheh (3.11)

Then in the group algebra we can write

x · y =
∑

g,h∈G
rgshegeh (3.12)

=
∑
g∈G

∑
h∈G

rgshegh

=
∑
g∈G

∑
h∈G

rhsh−1geg

So the two definitions align. Phew!

3.2 FG-modules and representations

Recall in the lectures we defined a representation as follows (for finite groups):

Definition 3.8. A representation of a finite group G on a finite-dimensional complex

vector space V is a homomorphism ρ : G → GL(V ) of G to the group of automorphisms

of V .

8Recall that a vector space is a specific kind of modules.
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It’s quite clear what this means - a representation ‘represents’ how the group elements

‘acts’ on your vector space of choice V . Since any map γ : V → V ∈ GL(V ) will be an

automorphism - it is quite clear that this definition aligns with the idea of what a group

element should do. We want to rephrase this using group algebras. How do we do that?

Let us first make a definition.

Definition 3.9. Let V be a vector space over F and G be a group. Then V is an FG-
module if a multiplication g ·v is defined to be satisfied for all u, v ∈ V , λ ∈ F and g, h ∈ G
the following statements.

(i) gv ∈ V .

(ii) (gh)v = g(hv) .

(iii) 1v = v .

(iv) λgv = g(λv) .

(v) g(u+ v) = gu+ vu .

Technically you can generalise this notion to R[G]-modules - an algebra is a ring so the

module in general will not be a vector space. But with this specific algebra (where the

underlying ring is a field) this is indeed the case. Now let us make the following definition.

Definition 3.10. A representation of the group algebra on a vector space V is an algebra

homomorphism ρ : FG→ End(V ).

When G is finite, we additionally have the following nice result.

Lemma 3.1. If F is a field and G is a finite group, then an FG-module is finitely-generated

iff it has finite dimension as an F-vector space.

Proof. If V is generated as an FG-module by the basis {v1, . . . , vt}, then V is generated as

an F-vector space by {gvi | g ∈ G, 1 ≤ i ≤ t}, and sinceG is finite we see that dimF(V ) <∞.

The converse is trivial.

The fundamental connection between modules over group algebras and representation the-

ory can be encapsulated in the following proposition.

Proposition 3.1. If F is a field and G is a finite group, then there is a bijective correspond-

ing between finitely-generated FG-modules and linear actions of G on finite-dimensional

F-vector spaces, i.e.{
finitely-generated

FG-modules

}
←→

{
linear actions of G on

finite-dimensional F-vector spaces

}
. (3.13)

Proof. Say V is a finitely-generated FG-module. Then dimF(V ) is finite by Lemma 5, and

the map G× V → V obtained by restricting the module structure map from FG× V → V

is a linear action. To see this, note that for each g ∈ G we obtain a map from V to V ,

denoted by φ(g) as,

φ(g)(v) = g · v , (3.14)
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with g ·v the given action of the ring element g on the element v of V , the finitely-generated

FG-module. Clearly, this is linear, and the properties of a module ensures that φ is a group

homomorphism, in particular φ(g−1) = φ(g)−1. Conversely for V a finite-dimensional F-
vector space on which G acts linearly with representation φ, V can be endowed with an

FG-module structure by defining,∑
g∈G

αgg

 v =
∑
g∈G

αgφ(g)(v) , (3.15)

where
(∑

g∈G αgg
)
∈ FG and v ∈ V . Here φ : G→ GL(V ) is a representation of G on the

vector space V ; and we can see how φ as a group homomorphism can be shown by,

(gigj) · v = φ(gigj)(v) = φ(gi)(φ(gj)(v)) = gi · (gj · v) . (3.16)

The processes are clearly mutually inverse of each other.

Remark 3.1. Note that the content of the proof in Proposition 3.1 does not explicitly

depend on the fact that the modules have to be finitely-generated. This means that the

finite conditions in the previous proposition can be dropped.

We usually consider the case where the field F is chosen to be the field of complex numbers

C. Then, a representation ρ : G → Aut(V ) will extend by linearity to a map ρ̃ : CG →
End(V ). This means that representations of CG will correspond exactly to representations

of G and in particular, this sets up the bijection between the set of representations ρ : G→
GL(V ) and the set of FG-module structures FG× V → V on V .

Let us perhaps illustrate this with a few examples.

Example 3.1 (Trivial module). The field F can always be regarded as an FG-module by

defining gλ = λ for all g ∈ G and λ ∈ F. This is known as the trivial module, and is of

course bijectively related to the trivial representation.

Example 3.2 (Permutation modules). Suppose G acts on a finite set X, and let FX be

the set of all formal F-linear combinations of elements of X. Then this set obviously has an

F-vector space structure with basis X. Define an FG-moduel structure on FX by linearly

extending the action of G on X, i.e. if X = {x1, . . . , xn}, then for g ∈ G and
∑

i cixi ∈ FX
then we have g(

∑
i cixi) =

∑
i ci(gxi). These are known as permutation modules.

In particular, we have the following special case:

Definition 3.11. The regular representation RG corresponds to the left action of G on

itself. Equivalently, RG is the space of complex-valued functions on G where an element

g ∈ G acts on a function α by

(g · α)(h) = α(g−1h) (3.17)

Proposition 3.2. The left CG-module given by CG itself corresponds to the regular repre-

sentation. i.e. Taking the elements of G as a basis of CG, then each g ∈ G permutes these

basis elements under the left regular permutation representation,

g · gi = ggi . (3.18)
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Proof. This is a simple proof - the action of an element on CG on itself is expressed in

Equation 3.12. This is exactly the regular representation where this action is simply the

lift by extending the definition of the regular representation above by linearity.

Remark 3.2. It is now trivial to check any definition of regular representations in your

undergraduate course is exactly the same as the definition above. Simply set a basis for

V , the representation space, and it should be obvious how Definition 3.11 matches up with

the stated definition.

Of course, if U and V are FG-modules, then U⊕V , U⊗FV , HomF(U,F) and HomF(U, V ) are

have natural FG-module structures. Note that in this language equivalent representations

can now be formalised.

Definition 3.12. Two representations of G are equivalent of the FG-modules afford-

ing them are isomorphic modules. Representations which are not equivalent are called

inequivalent.

Definition 3.13. Let R be a ring and M be a non-zero R-module. The module M is

irreducible if its only submodules are 0 and M , otherwise M is reducible. The module

M is indecomposable if M cannot be written as M1 ⊕M2 for any non-zero submodules

M1 and M2, otherwise M is decomposable. M is completely reducible if it is a direct

sum of irreducible submodules. A representation is accordingly named according to the

properties of the FG-module affording it.

Note that an irreducible module is by definition both indecomposable and completely

reducible. Reducible representations are those with a corresponding matrix representation

with matrices in block upper triangular form — to see this extend the G-invariant subspace

U ⊂ V to the whole space to get,

Rred(g) =

(
φ1(g) ψ(g)

0 φ2(g)

)
. (3.19)

Decomposable representations, on the other hand, can be written in the natural basis

V = U ⊕ U ′ in block diagonal form,

Rred(g) =

(
φ1(g) 0

0 φ2(g)

)
. (3.20)

There is also the very important notion of submodules.

Definition 3.14. If V is an FG-module affording the representation φ, then a subspace

U of V is G-invariant or G-stable if g · u ∈ U for all g ∈ G and u ∈ U . Then, the

FG-submodules of V are precisely the G-stable subspaces of V .

Another basic result of the representation theory of finite groups should be stated here.
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Theorem 3.1 (Maschke’s Theorem). Let G be a group, and suppose that the characteristic

of F 9is either zero or coprime to |G|. If U if an FG-module and V is an FG-submodule of

U , then V is a direct summand of Y as FG-modules.

Proof. Since V is an F-vector subspace of U we must have some subspace W ⊂ U such

that U = V ⊕W . Let π : U → V be the projection of U onto V along W such that π is

the unique linear transformation that is the identity on V and zero on W . Define a linear

transformation π′ : U → U as,

π′(u) =
1

|G|
∑
g∈G

gπ(g−1u) (3.21)

for u ∈ U . This definition is precise only when |G| ̸= 0, hence the characteristic require-

ment. Now, as V ⊂ U , gv ∈ V for any v ∈ V and g ∈ G so π′ maps U into V . Also since

π|V = idV so gπ(g−1v) = gg−1v = v and π′|V = idV . So U = V ⊕ kerπ′. It then remains

to show that kerπ′ is an FG-submodule of U . It suffices to show that π′ is an FG-module

homomorphism, i.e. π′(xu) = xπ; (u) for any x ∈ G and u ∈ U . Then,

π′(xu) =
1

|G|
∑
g∈G

gπ(g−1xu)

=
1

|G|
x

∑
g∈G

x−1gπ(g−1xu)


=

1

|G|
x

∑
g∈G

yπ(y−1u)


= xπ′(u) , (3.22)

where we have reindexed y = x−1g on the third line.

The reason to introduce Maschke’s Theorem is to show that we can work with irreducible

representations. To see this, note first the above results we have proved so far are inde-

pendent of the finite condition, and note that,

Lemma 3.2. An FG-module is finitely-generated iff it is finite-dimensional.

Proof. The proof is simple. If V is a finite dimensional vector space over F then it is clear

that any F gives a finite set of generators over FG and hence V is finitely generated as

an FG-module. Conversely, if V is finitely generated as an FG-module by {vi} then V is

spanned by a vector space by the finite set {g · vi | g ∈ G, 1 ≤ i ≤ k}.

Corollary 3.1. If G is a finite group and F is a field whose characteristic does not divide

|G|, then every finitely generated FG-module is completely reducible.

9The characteristic of a field F is defined as the smallest positive integer n such that n-summands of

unity 1 + · · ·+ 1 = 0.
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Proof. Let V be a finitely generated FG-module. Since V is finite-dimensional over F, we
can proceed by induction on its dimension — if it is irreducible it is completely reducible

and we are done. Otherwise, we use Maschke’s Theorem to decompose V = U ⊕W and

by induction each of U and W are direct sums of irreducible submodules and so is V .

In particular, this means that for a representation R : G → GL(V ) of finite degree, there

is a basis V such that for each g ∈ G the matrix of R(g) with respect to this basis is block

diagonal,

R(g) =

R1(g)
. . .

Rm(g)

 , (3.23)

with Ri an irrep for 1 ≤ i ≤ m.

Maschke’s Theorem is extremely useful in establishing a classification of the representations

of finite groups — it states that all representations, or FG-modules, can be decomposed

into a finite number of non-isomorphic irreducible FG-modules, thus reducing the task of

classifying all representations to only classifying irreducible representations.

3.3 Weddenburn-Artin Theorem

What we have seen so far from Maschke’s Theorem is the following result — if F is a field

where

|G| mod char(F) ̸= 0 , (3.24)

then every finitely-generated FG-module can be written as a direct sum of finitely many

simple (irreducible) modules. This, however, doesn’t inform us anything about the struc-

ture of these simple modules. In particular, we want to know how the precise structure

of these simple modules to construct the irreducible representations of an FG-module —

leading us to construct the irreps for a finite group G.

To do this we will need to classify all semisimple algebras. In particular, we will start by

proving the semisimplicity of a certain class of algebras known as matrix algebras, and

then ultimately show that all semisimple algebras lie in this class. We begin with some

definitions.

Definition 3.15. Suppose S is a finite-dimensional F-algebra. The set of n× n matrices

Mn(D) with entries inD is a finite-dimensional F-algebra with dimension n2 dimFD known

as the matrix algebra over D.

In particular, we denote Eij(α) to be the matrix inMn(D) with the only non-zero entry

at (i, j) being α.

Definition 3.16. The algebra D is a division algebra if the non-zero elements of D form

a group under multiplication.

Now we have a theorem.
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Theorem 3.2. Let D be a division algebra, and let n ∈ N. Then any simple Mn(D)-

module is isomorphic with Dn and Mn(D) is isomorphic as Mn(D)-modules with the

direct sum of n copies of Dn. In particular,Mn(D) is a semisimple algebra.

Proof. A non-zero submodule of Dn must contain some non-zero vector, which has some

non-zero element x at the j-th position. If we premultiply this vector by Ejj(x
−1) then

the submodule contains the j-th standard basis vector. Premultiplying by permutation

basis then means this submodules contains every vector, so Dn is simple. Now suppose

Ck ⊂ Mn(D) consisting of those matrices whose only non-zero entries appear in the k-

th column. Then we must have Mn(D) ∼=
⊕n

k=1Ck as Mn(D)-modules but each Ck is

isomorphic as anMn(D)-module with Dn. Therefore,Mn(D) is a semisimple algebra and

Dn is the unique simpleMn(D)-module.

This theorem suggests the following — the action of the matrices in the matrix algebra

Mn(D) on a module must be isomorphic to how matrices act on the vector space with n-

copies of D, Dn. The additional surprising property is that the matrices can be generated

by the vectors Dn and it is a semi-simple algebra as it is a direct sum of the individual

pieces Dn.

We additionally introduce two concepts about simple algebras, which are algebras which

has only itself and the zero-ideal as the only two-sided ideals.

Lemma 3.3. Simple algebras are semisimple.

Proof. Let A be a simple algebra, and let Σ be the sum of all simple submodules of A.

Let S be a simple submodule of A, and let a ∈ A. Then Sa is the image of S under the

homomorphism s 7→ sa so Sa is either zero or simple. Then in either case, we have Sa ⊂ Σ

for any simple submodule S and any a ∈ A so Σ is a right ideal in A and therefore a

two-sided ideal. But A is simple so Σ = A and A is a sum of simple A-modules so A is a

semisimple algebra.

Now we can discuss how matrix algebras and division algebras are related.

Theorem 3.3. Let D be a division algebra, and let n ∈ N. Then Mn(D) is a simple

algebra.

Proof. Let 0 ̸=M ∈Mn(D), we must show that the principal two-sided ideal J ofMn(D)

generated by M is equal to Mn(D). It suffices to show that J contains each Eij(1)

since these matrices generate Mn(D) as an Mn(D)-module. As M ̸= 0, there are some

1 ≤ r, s ≤ n such that the (r, s)-entry of M is non-zero. We call this x. Then we can easily

verify that Ess(1) = Esr(x
−1)MEss(1) ∈ J . Now let 1 ≤ i, j ≤ n, and let w and w′ be

the permutation matrices corresponding to the transpositions (i s) and (s j) respectively.

Then Eij(1) = wEss(1)w
′ ∈ J .

We can extend this by utilising the structure of direct sums of semisimple algebras. The

facts of the direct sums of algebras are found in Appendix A.2, and we will need the

theorem below. Now we can combine this with the division algebra structure.
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Theorem 3.4. Let r ∈ N. For each 1 ≤ i ≤ r, we let Di be a division algebra over F,
ni ∈ N and let Bi =Mni(Di). Let B be the external direct sum of the Bi. Then B is a

semisimple algebra having exactly r isomorphism classes of simple modules and exactly 2r

two-sided ideals, namely every sum of the form
⊕

j∈J Bj where J is a subset of {1, . . . , n}.

Proof. For each i, we can write Bi =
⊕ni

j=1Cij using Theorem 3.2 with Cij mutually

isomorphic simple Bi-modules. Since each Cij is also simple as a B module, B ∼=
⊕

i,j Cij

as B-modules and B is therefore a semisimple algebra by Lemma A.4 and Proposition

A.2 — where any simple B-module is isomorphic with some Cij . But since Cij
∼= Ckl as

B-modules iff i = k, we have exactly r-isomorphism classes of simple B-modules. The

two-sided ideals arguments follow easily.

The key result of the discussion above — a direct sum of matrix algebras over division

algebras is semisimple. The converse is in fact also true — this is the content of Wedder-

burn’s Theorem. but to get there we will need to understand the proof by first developing

some more concepts.

Definition 3.17. The endomorphism algebra of an A-module M , denoted EndA(M),

is an F-algebra with its multiplication given by the composition of mappings.

Definition 3.18. The opposite algebra Aop of an algebra A is the set A endowed with

the usual addition and scalar multiplication but with the opposite multiplication,

a · b = ba . (3.25)

We can show that endomorphism algebras and opposite algebras are closely related.

Lemma 3.4. Let B be an algebra. Then Bop ∼= EndB(B).

Proof. Let φ ∈ EndB(B) and a = φ(1). Then φ(b) = bφ(1) = ba for any b ∈ B so φ is equal

to the endomorphism ρa given by the right multiplication by a. i.e. EndB(B) = {ρa | a ∈ B}
so EndB(B) and B are in bijective correspondence. Finally, note that,

(ρaρb)(x) = ρa(xb) = xba = ρba(x) = ρa · b(x) , (3.26)

as required.

This suggests that we can gain information about semisimple algebras by studying the

properties of the endomorphism algebras of semisimple modules. We will come back to

use this fact on opposite algebras — the only thing now is to remember that the opposite

algebra is that the opposite algebra of a division algebra is also a division algebra. But

let’s move on and talk about A modules.

Lemma 3.5. Let S1, . . . , Sr be the distinct simple A-modules. For each i, let Ui be a direct

sum of copies of Si, and let U = U1 ⊕ · · · ⊕ Ur. Then we have that,

EndA(U) ∼= EndA(U1)⊕ · · · ⊕ EndA(Ur) . (3.27)
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Proof. Let φ ∈ EndA(U) and fix some i. Since every composition factor of Ui is isomorphic

with Si, the Jordan-Hölder theorem for modules tells us that the same is true of φ(Ui)

since φ(Ui) is isomorphic with a quotient of Ui. Let us first suppose that φ(Ui) were not

contained in Ui. Then the image of φ(Ui) in U/Ui under the natural map would be a non-

zero submodule having Si as a composition factor. But it follows from the hypothesis that

the composition factors of U/Ui are exactly Sj with j ̸= i, so Si cannot be a composition

factor of U/Ui or its submodules. Therefore for each i, we can define φi ∈ EndA(Ui) to

be the restriction to Ui of φ. So we can define a map Γ : EndA(U) → EndA(U1) ⊕ · · · ⊕
EndA(Ur) by setting Γ(φ) = (φ1, . . . , φr). Then Γ is an A-module monomorphism, and let

(φ1, . . . , φr) ∈ EndA(U1) ⊕ · · · ⊕ EndA(Ur). We define φ̂ ∈ EndA(U) as: given x ∈ U , we

write x = x1 + · · · + xr where xi ∈ Ui and define φ̂(x) = φ1(x1) + · · · + φr(xr). We then

have (φ1, . . . , φr) = Γ(φ̂) so Γ is surjective.

Lemma 3.6. If S is a simple A-module, then for any b ∈ N we have EndA(nS) ∼=
Mn(EndA(S)).

Proof. We can regard the elements of nS as being column vectors of length n with entries

from S. Let Φ = (φij) ∈Mn(EndA(S)). We define Γ(Φ) : nS → nS by using,

Γ(Φ)

s1...
sn

 =

φ11(s1) + · · ·+ φ1n(sn)
...

φn1(s1) + · · ·+ φnn(sn)

 (3.28)

We find that Γ(Φ)(as + t) = a [Γ(Φ)(s)] + Γ(Φ)(t) for any a ∈ A and s, t ∈ nS since

each φij is an A-module homomorphism, then Γ(Φ) ∈ EndA(nS). You can check that

Γ :Mn(EndA(S))→ EndA(nS) defined like this is an algebra monomorphism. Now let ψ

be an element of EndA(nS). We define ψij : S → S by a similar construction like,

ψ


s

0
...

0

 =


ψ11(s)

ψ21(s)
...

ψn1(s)

 , (3.29)

so find that ψij ∈ EndA(S). Let Ψ = (ψij) ∈ Mn(EndA(S)), then Γ(Ψ) = ψ so Γ is

surjective as required.

Therefore, if S is a simple A-module, it follows immediately from Schur’s Lemma that

the non-trivial endomorphisms of S form a group under multiplication so EndA(S) is a

division algebra. In particular, we can learn something more specific about the structure

of EndA(S) when the ground field F is algebraically closed.

Lemma 3.7. Suppose F is algebraically closed, and let S be a simple A-module. Then

EndA(S) ∼= F.
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Proof. Let φ ∈ EndA(S). We can see φ as an invertible F-linear self-map of the finite-

dimensional F-vector space S and therefore it has a non-zero eigenvalue λφ. Suppose

I ∈ EndA(S) is the identity element, then φ − λφI ∈ EndA(S) has a non-zero kernel and

therefore is not invertible so φ = λφI since EndA(S) is a division algebra. Then the map

sending φ to λφ is an isomorphism from EndA(S) to F.

Lemma 3.8. Let B be an algebra. ThenMn(B)op ∼=Mn(B
op) for any n ∈ N.

Proof. We define ψ :Mn(B)op → Mn(B
op) by letting ψ(X) be the transpose XT of the

matrix X. This map ψ is clearly bijective. Let X = (xij) and Y = (yij) be elements of

Mn(B)op. Then for any i and j, we have,

(ψ(X)ψ(Y ))ij =

n∑
k=1

ψ(X)ik · ψ(Y )kj

=

n∑
k=1

xkiyjk = (Y X)ji = (X · Y )Tij = ψ(X · Y )ij , (3.30)

so we have ψ(X · Y ) = ψ(X)ψ(Y ) and hence ψ is an algebra homomorphism.

Now we can put all of the pieces together to state Wedderburn’s main structure theorem.

Theorem 3.5. The algebra A is semisimple iff it is isomorphic with a direct sum of matrix

algebras over division algebras.

Proof. Suppose that the algebra A is semisimple. Then we can write A in the form A =

U1 ⊕ · ⊕Ur where Ur is the direct sum of ni copies of a simple A-module Si and no two of

the Si are isomorphic. We then have,

Aop ∼= EndA(A)

∼= EndA(U1)⊕ · · · ⊕ EndA(Ur)

∼= EndA(n1S1)⊕ · · · ⊕ EndA(nrSr)

∼=Mn1(EndA(S1))⊕ · · · ⊕Mnr(EndA(Sr)) , (3.31)

and therefore,

A ∼= [Mn1(EndA(S1))⊕ · · · ⊕Mnr(EndA(Sr))]
op

∼=Mn1(EndA(S1))
op ⊕ · · · ⊕Mnr(EndA(Sr))

op

Mn1(EndA(S1)
op)⊕ · · · ⊕Mnr(EndA(Sr)

op) . (3.32)

This means that since the endomorphism algebra of a simple module is a division algebra

and since the opposite algebra of a division algebra is also a division algebra any semisimple

algebra is isomorphic with a direct sum of matrix algebras over division algebras. The

converse is established in Theorem 3.4.

Most importantly we have the following corollary.
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Corollary 3.2. The algebra A is simple iff it is isomorphic with a matrix algebra over a

division algebra.

Proof. Suppose that A is simple. Then A is semisimple and by Theorem 3.5 A is isomorphic

with a direct sum of r matrix algebras over division F-algebras and hence by Theorem 3.4

A has exactly 2r ideals. But A is simple and therefore has exactly two ideals so we have

r = 1 and therefore any simple algebra is isomorphic with a matrix algebra over a division

algebra. The converse is established in Theorem 3.3.

Additionally, semisimple algebras over algebraically closed fields have a more specific clas-

sification than those over arbitrary fields.

Theorem 3.6. Suppose that field F is algebraically closed. Then any semisimple algebra

is isomorphic with a direct sum of matrix algebras over F.

Proof. Follows from Lemma 3.7 and Theorem 3.5.

The point of Wedderburn’s Theorem is thus. It states that a semisimple algebra is indeed

isomorphic with a direct sum of matrix algebras over division algebras, thus enabling us

to write the group ring FG as follows. Since FG is semisimple, we have by Wedderburn’s

Theorem,

FG ∼= R1 × · · · ×Rr , (3.33)

where Ri is the ring of ni × ni matrices over some division ring Di. Now if F = C, then F
is algebraically-closed and we have Di = C so

Ri =Mni(C) . (3.34)

We can then prove the following statement.

Proposition 3.3. The group order can be determined by the dimensions of the irreducible

representations.
r∑

i=1

n2i = |G| . (3.35)

Proof. From Wedderburn’s Theorem the decomposition gives each matrix ring Mni(F)
having dimension n2i over F and therefore R has dimensions

∑r
i=1 n

2
i over F. also since the

centre of eachMni(F) is one-dimensional Z(R) has dimension r over F.

We realise that this result comes not from character theory, but is a direct consequence of

the structure of the matrix algebras. There is one final result to show.

Corollary 3.3. The number of Wedderburn components in FG, r (i.e. number of irreps),

is equal to the number of conjugacy classes of G.
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Proof. From Proposition 3.3 we have r = dimC Z(CG). Let Ki be the distinct conjugacy

classes of G. Fro each conjugacy class Ki of G let

Xi =
∑
g∈Ki

g ∈ CG . (3.36)

Note that Xi and Xj (i ̸= j) have no common terms since they are linearly independent

elements. AlsoXi commutes with all group elements since h−1Xih = Xi for arbitrary h ∈ G
so Xi ∈ Z(CG). Now we show that Xi form a basis of Z(CG), so s = dimC Z(CG) = r.

Since Xi are linearly independent it remains to show that they span Z(CG). Let X =∑
g∈G αgg be an arbitrary element of Z(CG). Since h−1Xh = X, we have,∑

g∈G
αgh

−1gh =
∑
g∈G

αgg . (3.37)

So since the elements of G form a basis of CG the coefficients αhgh−1 = αg. Since h is

arbitrary, every element in the same conjugacy class of a fixed group element g has the

same coefficient in X, then X can be written as a linear combination of the Xis.

We have therefore shown that the group algebra FG or CG has exactly r distinct isomor-

phism types of irreducible modules and these have complex dimensions n1, . . . , nr so G has

exactly r inequivalent irreducible complex representations of the corresponding degrees. In

particular, r, the number of irreps, is equal to the number of conjugacy classes in G and∑r
i=1 n

2
i = |G|. The fact that these results come directly from the structure of semisimple-

ness of the group algebra shouldn’t surprise you — in the lectures we have used character

theory to show these results (as the proofs there are normally easier) but character theory

works in the end because the existence of class functions exactly depends on this nontrivial

structure of group algebras.
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4 Character tables

Most of you did very well when tackling character theory questions. I just want to sum-

marise some facts here and give you a general direction as to how to construct character

tables for finite groups (you can probably generalise this to Lie groups - try it)!

Let us first recall the definition of a character table for finite groups. Throughout this

section, we fix G to be a group and F to be an arbitrary field 10.

Definition 4.1. A class function is a function f : G → F which is constant on the

conjugacy classes of G. i.e. for g, x ∈ G, we have

f(g−1xg) = f(x) . (4.1)

Definition 4.2. Let R be a representation of G afforded by the FG-module V 11. The

character χV of the representation V is the class function χ : G→ F such that,

χ(g) = trR(g) . (4.2)

where trR(g) is the trace of the matrix R(g) with respect to some basis of V .

Definition 4.3. The character table X of a finite group is a table of character values

with the list of representations of the r conjugacy classes along the top row and the list

of irreducible characters down the first column. The entry in the table in the row χi and

column gj is χi(gj).

Suppose gi where i = 1, . . . , r are the representatives of the r conjugacy classes of G.

Conventionally we pick g1 = e so an example of a character table X (G) would look like

the one in Table 4.1.

Note that the first row of the character table is always the trivial representation, i.e. where

e g2 . . . gr

χ1 1 1 . . . 1

χ2 f2 χ2(g2) . . . χ2(gr)
...

...
...

. . .
...

χr fr χr(g2) . . . χr(gr)

Table 4.1: A character table for group G. Here gi are the conjugacy classes (labelled by

the element gi), χj are the irreps and fj are the degrees of G (dimension of the irrep χj).

all of the characters are 1. This is known as the principal character of G.

Definition 4.4. The principal character of a finite group G is the character of its trivial

representation; i.e. for all conjugacy classes represented by element gr, χP (gr) = 1.

10This is not the field in the physical sense, i.e, not an electric field, etc. but a mathematical field. A field

is a ring with a multiplicative inverse.
11Apologies for the inverted definition — the full definition of the FG-module is defined in the following

section.
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The definitions of the characters should be obvious to you. If they are not, you should

consult Andre’s lectures notes again.

4.1 Constructing the character table

It is useful to determine the character tables for finite groups to work out their representa-

tion contents. In particular, it is useful to know how to derive the character tables of some

basic examples of finite groups.

To construct the character table of a finite group G, we can use the following steps.

1. Determine all the conjugacy classes of the group 12.

2. Use the fact that the number of irreducible representations of G is equal to the

number of conjugacy classes (Theorem 2.8 of the lecture notes or Corollary 3.3).

3. Find the dimensions of the irreps. You can use the following formula,∑
i

(dimRi)
2 = |G| , (4.3)

as a guide (Theorem 2.3 of the lecture notes or from Proposition 3.3).

4. Start with the principal character of G to get one dimension-one irrep.

5. Use row and column orthogonality of characters to determine the rest of the unknown

entries of the character table.

The above steps, of course, are just here for guidance — there is no need to follow them if

you have other ways of determining the character table! In particular, there are times when

you do not want or cannot use the orthogonality property of characters (for example, if there

are not enough rows or columns). In this case there might be other clever ways to construct

other dimension-one characters, e.g. taking determinants of an existing representation.

Alternatively, you may also see if you can get anything from the regular representation 13...

4.2 Character orthogonality

The key statement to proof in this subsection is something known as row and column

orthogonality. You probably already know what row orthogonality is: it is just Theorem

2.1 of the lecture notes:

(χ, χ̃) =
1

|G|
∑
g∈G

χ(g)χ̃(g) , (4.4)

or for irreps Ri and Rj ,

(χi, χj) = δij , (4.5)

12You can probably use some smart argument with the symmetric group Sn - using Cayley’s Theorem in

[2] that all groups are isomorphic to subgroups of the symmetric group.
13Often times, if you are given a question in the exam or in the problem sheet to find the character table

there will be other clues somewhere... such as the existence of a matrix representation given in the question.
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where we have defined the inner product of class functions as, given α and β class functions

on G,

(α, β) =
1

|G|
∑
g∈G

α(g)β(g) . (4.6)

What is column orthogonality? It is in fact a corollary of Theorem 2.1 of the lecture notes:

Corollary 4.1. For irreps Ri, and conjugacy class cI , we have

[χI , χ̃J ] =
|cI |
|G|

∑
i

χi(gI)χ̃i(gJ) = δIJ (4.7)

with A,B indicating the different conjugacy classes and |cI | the number of elements in the

conjugacy class labelled I.

Proof. From simple linear algebra. If we rescale the original character table by
√

dim(Ri)
|G|

for each i (i.e. each row), we obtain a unitary matrix. The transpose of a unitary matrix

is unitary, so the column vectors are orthonormal to each other. The correct scaling is

deduced by the redefinition of the sum. An alternative proof is as follows. We define class

functions ψs for 1 ≤ s ≤ k by

ψs(gr) = δrs , (4.8)

where k is the number of conjugacy classes. As characters form a basis of the space of class

functions14, ψs is a linear combination of χi,

ψs =

k∑
i=1

λiχi . (4.9)

We know that for irreps (χi, χj) = δij . So we must have

λi = (χi, ψs) =
1

|G|
∑
g∈G

χi(g)ψs(g) . (4.10)

By definition of ψs, it is 1 if g is conjugate to gI and 0 otherwise. So this gives:

λi =
χi(gI)|gI |
|G|

, (4.11)

where |gI | is the number of elements in the conjugacy class represented by gI . So substi-

tuting into the definition of ψs gives

δIJ =
|gI |
|G|

∑
i

χi(gI)χ(gJ) , (4.12)

as required.

Column orthogonality strictly speaking gives no new information - but it might speed up

your calculation when you are trying to deduce the entire character table, as we have

mentioned before.
14See, for example, [1].
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4.3 Examples

Example 4.1 (Character Table of Z2). The most simple example is the group Z2. There

are only two elements, namely the trivial e and the flip b. The conjugacy classes are just

the two elements separately in each. Using n1 + n2 = 2, where the principal character

simply has characters (1, 1), we realise that the other character must be (1,−1), hence
giving the following group table.

e b

χ1 1 1

χ2 1 −1

Table 4.2: Character table for Z2.

Distributed version:

Exercise 4.1. Try and find the character table of S3, as per Q3 of Problem Sheet

1.
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5 Young Tableaux and Projectors

In this section I would like to discuss about Young Tableaux and representation projectors.

Young Tableaux is a vast subject - they are extremely useful in describing the representa-

tions of Sn. As a result, they are used in a variety of contexts such as describing tensors and

projectors. Meanwhile, projectors are extremely important in physics as they are effectively

the operators that allow take you to the relevant space of the irreducible representation.

Here I aim to provide a summary of results regarding Young Tablaeux, particularly high-

lighting the use of Young Tablaeux in describing projectors. The main references for this

section are [1, 12].

5.1 Young Diagrams and Tableaux

We first recall that the number of irreducible representations of Sn is the number of con-

jugacy classes, i.e. the number of partitions p(n) of n = λ1 + ...+ λk. To each partition we

will associate a Young diagram15:

Definition 5.1. A Young diagram is a collection of boxes, or cells, arranged in left-

justified rows, with a weakly decreasing number of boxes in each row. Listing the number

of boxes in each row gives a partition p(n) of integer n, where it is also the total number

of boxes. Conversely, as stated above, each partition correspond to a Young diagram.

Example 5.1. Consider the partition 11 = 6 + 4 + 1, or (6,4,1). Then the corresponding

Young diagram is

(5.1)

Definition 5.2. A Young tableau is a filling (i.e. entering numbers into boxes) of a

Young diagram such that the numbers are,

(i) weakly increasing across each row, and

(ii) strictly increasing down each column.

A standard Young tableau is a tableau in which entries are numbers from 1 to n, n

being the total number of boxes.

Example 5.2. Consider the partition (5,2,1). Then one of the possible corresponding

Young tableau is:
1 2 5 6 8
3 4
7

(5.2)

15This is also called a Ferrers diagram or a Young frame according to [1]. Haven’t really seen these names

before to be honest.
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5.2 Projection Formulae

Before we continue, let us revisit the topic of projection formulae. Firstly, recall that we

have the trivial projection operator that projects onto the direct sum of trivial factors in

the decomposition. In the lectures, we have used this to obtain several results in character

theory, namely to derive character orthogonality. For completeness I will recap this here.

Definition 5.3. We define the direct sum of trivial factors in a representation16 V of a

group G to be

V G = {v ∈ V | gv = v,∀g ∈ G} . (5.3)

We want a way to find V G explicitly - to do this we will need a G-module homomorphism17

so we take the average of all these endomorphisms and set

φ =
1

|G|
∑
g∈G

g ∈ End(V ) , (5.4)

which this will be G-linear as
∑
g =

∑
hgh−1. We then have the following proposition.

Proposition 5.1. The map φ is a projection of V onto V G.

Proof. First, suppose v = φ(w) = 1
|G|
∑
gw. Then for any h ∈ G we have

hv =
1

|G|
∑

hgw =
1

|G|
∑

gw , (5.5)

such that the image of φ is contained in V G. Conversely, if v ∈ V G, then φ(v) = 1
|G|
∑
v =

v, so V G ⊂ Im(φ) and φ ◦ φ = φ.

Remark 5.1. In particular, if we wish to know the number m of the copies of trivial

representation appearing in the decomposition of V then we can just compute the trace of

φ.

Now let us move on to derive a more general projection formula. Let us first have the

following Proposition.

Proposition 5.2. Let α : G → C be any function on the group G, and for any represen-

tation V of G set

φα,V =
∑

α(g) · g : V → V . (5.6)

Then φα,V is a homomorphism of G-modules for all V if and only if α is a class function.

16In this section a representation R : G → End(V ) will be indicated by its representation space V . This

is just a notation.
17Observe in general that if V is the representation of a finite group G then each G will give a map

ρ(g) : V → V but this is in general not a G-module homomorphism as for general h ∈ G we have

g (h (v)) ̸= h (g (v)).

– 23 –



Proof. We have

φα,V (hv) =
∑

α(g) · g(hv) (5.7)

=
∑

α(hgh−1) · hgh−1(hv)

= h
(∑

α(hgh−1) · g(v)
)

= h
(∑

α(g) · g(v)
)

= h (φα,V (v)) ,

where the second line follows from substitution and the fourth follows from α being a class

function. This is just the condition that φα,V is G-linear.

We can now use this to construct a projection formula. Let us suppose W is a fixed

irreducible representation. Then for representation V , we can look at the weighted sum:

ψ =
1

|G|
∑
g∈G

χW (g) · g ∈ End(V ) . (5.8)

From Proposition 5.2, it is clear that ψ is a G-module homomorphism. Therefore, if V is

an irreducible representation, we will then have ψ = λ id (id being the identity map) and

therefore

λ =
1

dimV
Trψ (5.9)

=
1

|G|dimV

∑
χW (g) · χV (g)

=

{
1

dimV if V =W

0 if V ̸=W
.

Therefore, what we have is for arbitrary V , the projector

ψV =
dimW

|G|
∑
g∈G

χW (g) · g : V → V (5.10)

is the projection of V onto the factor consisting of the sum of all copies ofW (compare with

the case with the trivial factors, the projectors act on the sum of the spaces). Therefore,

we have that

Definition 5.4. Let the decomposition for a general representation V as

V =
⊕

V ⊕ai
i , (5.11)

where Vi are the inequivalent irreps, the projector of V onto V ⊕ai
i is

πi =
dimVi
|G|

∑
g∈G

χVi(g) · g . (5.12)
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This means that the projector π(i) : Rreg → R⊕∆i
i of the regular representation onto the

irreducible subspaces R⊕∆i
i , where ∆i = dimRi is the dimension of the irrep Ri, is then

π(i) =
dim(Ri)

|G|
∑
g∈G

χi(g) · g , (5.13)

where |G| is the order of the group and χi(g) is the character of the irrep Ri and element

g.

5.3 Young Tablaeux as Projectors

A standard Young tableau is what is used to describe projection operators for the regular

representation onto irreducible representations of Sn. To show this, let us associate

P = Pλ = {g ∈ Sn | g preserves each row} , (5.14)

together with

Q = Qλ = {g ∈ Sn | g preserves each column} , (5.15)

where eg is the corresponding element of g in the group algebra CSn. In the same space

we can introduce the following terms:

aλ =
∑

eg , g ∈ P , (5.16)

and

bλ =
∑

sgn(g)eg , g ∈ Q , (5.17)

λ here is a free index labelling the invariant subspaces of the regular representation. We

can now define the following.

Definition 5.5. The Young symmetriser is defined to be

cλ = aλ · bλ ∈ CSn . (5.18)

This gives the following Theorem.

Theorem 5.1. Some scalar multiple of cλ is idempotent, i.e. c2λ = nλcλ. im(cλ) is the

irreducible invariant subspace Vλ of Sn. Every irreducible representation of Sn can be

obtained in this manner for unique partition (i.e. for a valid standard Young tableau).

Proof. See §4.2 and Theorem 4.3 of [1].

I also state two very useful formula for computing the projection operators.

Lemma 5.1. (Hook Length Formula) We have

dimVλ =
d!∏

(Hook lengths)
, (5.19)

where the hook length of a box in a Young diagram is the number of squares directly below

and to the right of the box, including the box itself once.
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Proof. Again see §4, Hook Length Formula 4.12 of [1].

In fact we can then write

nλ =
d!

dimVλ
=
∏

(Hook lengths) . (5.20)

This is the inverse of the coefficient c you typically need to find when you write down the

projector 18 19:

πλ = c

∑
σ∈Rλ

σ

∑
σ∈Cλ

sgn(σ)σ

 = ccλ (5.22)

How does this relate to the projector stated in the previous section, in Eq. (5.13)?

π(i) =
dim(Ri)

|G|
∑
g∈G

χi(g) · g (5.13)

The projector πi projects onto the sum of irreducible representations Ri of the same dimen-

sions, i.e. onto R⊕i∆i
i where ∆i = dimRi; whereas πλ in Sn projects onto the individual

irreducible representations Rλ of the regular representation, the individual invariant sub-

spaces. Labelling the individual irreps as R
(i)
λ , where λ is the index denoting the irrep

within the irreps of the same dimensions and i labelling the irreps of different dimensions,

we then have the following completeness relations:∑
i

π(i) = id , (5.23)

together with ∑
λ

π
(i)
λ = π(i) (5.24)

We can check this explicitly in Q3 of the first problem sheet for the two two-dimensional

irreducible representations of the symmetric group S3. This gives us the following example.

Distributed version:

Exercise 5.1. Try and find the projectors of the two-dimensional irreps of S3 in Q3

of Sheet 1 again. You should find that the projector π2D in Eq. (5.13) is the sum

of the projector into the 2 irreps (invariant subspaces) of the group algebra CG in

Eq. (5.22), or,

π2D = π2D,1 + π2D,2 (5.25)

18See p.32 of notes.
19Here, to calculate coefficient c, a quick way is to use idempotency, i.e.

π2
λ = πλ . (5.21)
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6 Spin Groups and Lie Algebra Isomorphisms

In Question 1 of the second sheet we encountered the following Lie algebra isomorphisms:

so(4) ∼= su(2)⊕ su(2) (6.1)

so(6) ∼= su(4) (6.2)

Of course, in the question you are asked to construct an explicit basis to show that the Lie

algebras are isomorphic20. But now we have the questions:

1. Are there any more Lie algebra isomorphisms like this? Is there an exhaustive list?

2. Is there an alternative proof to this, perhaps without using an explicit basis?

The answer to the first question is actually really straightforward - these are known as real

form isomorphisms. Here is a list of these ‘accidental’ isomorphisms of complex classical

Lie algebras:

u(1) ∼= so(2) (6.3)

su(2) ∼= so(3) (6.4)

su(2)⊕ su(2) ∼= so(4) (6.1)

sp(2) ∼= so(5) (6.5)

su(4) ∼= so(6) (6.2)

so(8) ∼= so(8) (6.6)

The last one (Equation 6.6) is in fact a nontrivial “triality” automorphism of so(8) and it

is somehow closely related to the exceptional Lie group G2.

You can definitely see a pattern here - most of the nontrivial ones are of the form so(n)

where n ∈ {3, 4, 5, 6}. This allows me to answer the second question - of course, one can

always check this by using some clever way of finding a basis and checking that these is

an explicit Lie algebra isomorphism between them. Another way, of course, is to use the

Dynkin formalism to show that the Lie algebras have the same Dynkin diagram (hence they

must be isomorhpic). These two methods however are not basis-indepedent - the former

explicitly involves a choice of basis, but the latter also implicitly uses the Cartan-Weyl

basis. The trick to find a basis-independent method is to notice that this isomorphism is

related to the theory of Clifford algebras and spin groups. Understanding this is of course

way beyond our course, but it is in fact illuminating - you can establish the isomorphism of

su(2) and so(3) by first finding an appropriate cover of a Lie group and translating it back

to the Lie algebra level by taking the tangent map. This covering business is intrinsically

related to how spins arise and in fact are the reason why the isomorphism arises from spin

structures in the first place. To fully understand what is going on we will need to first

establish some relevant concepts.

20I am not allowed to reproduce the answer here sorry - internal policy!
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6.1 Universal Covers and Projective Representations

In the lectures we are introduced to the idea that SU(2) is a two-fold cover of the manifold

SO(3). This is in fact the exact reason why we have spins. To explain this, we need to

first understand the relationships between covers and projective representations.

6.1.1 Universal Coverings

We begin by defining what a covering map is [7].

Definition 6.1. A subset U ⊂ X is evenly covered by π if U is connected and open,

and each component π−1(U) is an open set that is mapped homeomorphically onto U by

π.

Definition 6.2. A covering map is a continuous surjective map π : X̃ → X such that

X̃ is path-connected and locally path-connected21, and every point p ∈ X has an evenly

covered neighbourhood. We call X̃ the covering space of X and X the base of the covering.

Of course, everything so far is in the topology context. To specialise this to smooth

manifolds (which is what we want), we will need to restrict the definition to a very specific

type of covering map22.

Definition 6.3. Take E and M connected smooth manifolds with or without boundary.

A map π : E → M is called a smooth covering map if π is smooth and surjective, and

each point in M has a neighbourhood U such that each component of π−1(U) is mapped

diffeomorphically onto U by π. We say U is evenly covered. We call M to be the base

manifold, and E a covering manifold of M . If E is simply-connected, it is called the

universal covering manifold of M .

Here simply-connected means every loop is path-isomorphic to a constant path 23. We want

to show that this universal covering exists and is in fact unique. I will here quote a few

lemmas and theorems without detailed proof - the details can be found in the references

[7, 14].

Theorem 6.1. Suppose M is a connected smooth-n-manifold, and π : E →M is a topolog-

ical covering map. Then E is a topological n-manifold, and has a unique smooth structure

such that π is a smooth covering map.

Proof. See Proposition 4.40 of [7].

21It might be surprising to see how path-connectedness does not generally imply locally path-

connectedness. A counterexample is the topologist’s sine curve, y = sin
(
1
x

)
for x ∈ (0, π) together with

closed arc connecting (0, 0) and (π, 0) where the space is path-connected but not locally path-connected at

(0, 0).
22By the way, if you are completely baffled by the definitions I just made, these are just mathematical

details that you can skip (if you want, but I am weird so I will babble on). Alternatively you should pick

up some topology books and start learning what topology is.
23Phrased in the language of the fundamental group at X, simply-connectedness simply means that the

fundamental group of a manifold at every point q ∈ M is the trivial group [7, 13].
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Corollary 6.1. If M is a connected smooth manifold, there exists a simply connected

manifold M̃ - the universal covering manifold of M , and a smooth covering map

π : M̃ → M . The universal covering manifold is unique such that for any other universal

covering manifold M̃ ′ with projection map π′, then there exists a diffeomorphism Φ : M̃ →
M̃ ′ such that π′ ◦ Φ = π.

Proof. This is Corollary 4.43 of [7]. Since a proof is not given there I will give a sketch of

the proof. The first step is show that any connected and locally simply connected space

admits a unique universal cover. You will need some sort of path-connectedness arguments

(see Theorem 12.8 of [14]) - to show the path classes are lifted to the upper space, then

check several topological requirements (path-connectedness, topologies, covering maps).

Now by Theorem 6.1 you have the existence of a smooth covering manifold of M that is

simply-connected. To show uniqueness, we need to find ϕ between any two universal covers

that is a diffeomorphism - to show this find open sets such that you can find a surjective

smooth submersion of π
∣∣
V −1 must give you a smooth ϕ and ϕ−1 in both directions.

Now it is straightforward to generalise this to Lie groups.

Theorem 6.2. Let G be a connected Lie group. There exists a simply connected Lie group

G̃, called the universal covering group of G, that admits a smooth covering map π : G̃→ G

that is also a Lie group homomorphism.

Proof. See Theorem 7.7 of [7]. Essentially the idea is you now need to also do group axiom

checks on the universal covering group.

Theorem 6.3. For any connected Lie group G, the universal covering group is unique

in the following sense: if G̃ and G̃′ are connected Lie groups with corresponding smooth

covering maps π and π′, then there exists a Lie group homomorphism Φ : G̃ → G̃′ such

that π′ ◦ Φ = π.

Proof. Again - this is similar to the proofs done above. See Theorem 7.9 of [7].

What is the point of establishing all this notation? Turns out establishing these universal

covering groups on the Lie groups we know and love, say SO(3), are extremely important

when it comes to constructing so-called spins!

6.1.2 Projective Representations

Let us first define what a projective representation is [15, 16].

Definition 6.4. Let G be a group and V a finite-dimensional vector space over a field

F . A map ρ : G → GL(V ) is a projective representation of G over F if there exists a

mapping α : G×G→ F ∗ such that the following two properties hold:

1. ρ(x)ρ(y) = α(x, y)ρ(xy) ∀x, y ∈ G

2. ρ(1) = idV
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The two conditions imply that α satisfies the following properties:

• α(x, y)α(xy, z) = α(y, z)α(x, yz) ∀x, y, z ∈ G

• α(x, 1) = α(1, x) = 1 ∀x ∈ G

We provide an alternative definition most useful to this discussion. We note that for

quantum mechanical objects, it is most useful to look at unitary representations24. First

recall the following:

Definition 6.5. Let U(V ) be the group of invertible linear transformations of a finite-

dimensional Hilbert space V over C that preserve the inner product. A finite-dimensional

unitary representation of a matrix Lie group G is a continuous homomorphism of Π :

G→ U(V ) for some finite-dimensional Hilbert space V .

Definition 6.6. Let V be a finite-dimensional Hilbert space over C. The projective

unitary group over V , denoted PU(V ) is then the quotient group

PU(V ) = U(V )/eiθI (6.7)

where eiθI denotes the group of matrices in U(1)I, I being the identity matrix here.

Now let Q : U(V ) → PU(V ) be the quotient homomorphism and let q : u(V ) → pu(V ) be

the associated Lie algebra isomorphism. We note that given an ordinary unitary represen-

tation Σ : G → U(V ), we can always form a projective representation Π : G → PU(V ) by

setting Π = Q ◦ Σ. This is equivalent to saying the following diagram commutes:

G

U(V ) PU(V )

Σ Π

Q

Note that not all projective representations arise in this fashion. I will state the following

propositions without detailed proof.

Proposition 6.1. If V is a finite-dimensional Hilbert space over C, then PU(V ) is iso-

morphic to a matrix Lie group. The associated Lie algebra homomorphism q defined above

has the kernel {iaI}, so pu(V ) is isomorphic to u(V )/{iaI}.

Proof. Consider the homomorphism Γ : U(V )→ GL(gl(V )), such that for given U ∈ U(V ),

Γ : U 7→ CU (X) = UXU−1. Then one can show that ker Γ = {U(1)I}, so the image

under this homomorphism is isomorphic to the quotient group U(V )/{eiθI}, compact, and

closed, i.e. a matrix Lie group isomorphic to PU(V ). To find the related Lie algebra

homomorphism, we note that cX(Y ) = [X,Y ], with the kernel of cX being the scalar

multiples of I in u(V ) - the group {iaI}. The map cX therefore must map onto pu(V ),

giving the required isomorphism.
24Recall this is to make sure that the states are positive-definite so we can define a notion of probability

on the Hilbert space.
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Every finite-dimensional projective representation can be “de-projectivised” at the Lie-

algebra level. To state this we have the following proposition.

Proposition 6.2. Let Π : G → PU(V ) be a finite-dimensional projective unitary rep-

resentation of a matrix Lie group G, and π : g → pu(V ) be the associated Lie algebra

homomorphism. Then there exists a Lie algebra homomorphism σ : g → u(V ) such that

π(X) = q(σ(X)) ∀X ∈ g. So the following diagram commutes:

g

u(V ) pu(V )

σ π

q

This σ is unique upon fixing that trσ(X) = 0 ∀X ∈ g.

Proof. This proposition boils down to the fact that you can always fix σ(X) to have trace

zero by choosing for Y ∈ u(1), pick σ(X) = Y + cI where c is an appropriate pure-

imaginary constant. Such σ therefore always exist. (See Proposition 16.46 of [16] for more

details.)

Now we can say the most important theorem in this subsection:

Theorem 6.4. Suppose G is a matrix Lie group and G̃ is a universal cover of G with the

covering map Φ. Then the following hold:

1. Let Π : G → PU(V ) be a finite-dimensional projective unitary representation of G.

Then there is an ordinary unitary representation Σ : G̃ → U(V ) of G̃ such that

Π ◦Φ = Q ◦Σ. Any such Σ is irreducible if and only if Π is irreducible. Σ is unique

if we choose det(Σ(A)) = 1, A ∈ G̃.

2. Let Σ be a finite-dimensional irreducible unitary representation of G̃. Then the kernel

of the associated projective unitary representation Q ◦ Σ contains the kernel of the

covering map Φ. Therefore Q ◦ Σ factors through G and gives rise to a projective

unitary representation of G.

Point 1 is equivalent to saying that the following box diagram commutes:

G PU(V )

G̃ U(V )

Σ

Π

Φ Q

Proof. See Theorem 16.47 of [16]. The idea is actually really simple - we make use of

Proposition 6.2 to find an ordinary representation of g at the base level, and then simply

lift it up and apply Lie’s Theorem at the cover level. The second half the theorem rests on

the fact that kerΦ is a discrete normal subgroup G̃ and is therefore central. We can then
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show that Σ(A), where A ∈ kerΦ under Schur’s lemma gives Σ(A) = cI as it intertwines

V to itself. The A is in the kernel of the associated projective representation Q ◦ Σ.

Of course, we should be dealing with the infinite-dimensional case. Here of course the

unitary representation needs to be defined slightly different25 The main thing to note here

is that we can no longer do the de-projectivisation by passing to the Lie algebra since

there is no unique member we can choose - the notion of trace doesn’t work for unbounded

operators on the Hilbert space. Point 1 in Theorem 6.4 no longer works. However, if G

is connected and “semi-simple”, every projective unitary representation of G can be de-

projectivised after passing to the universal cover. This is in fact the crucial reason why

we need to study the universal covering manifolds! The spins intrinsically comes from this

universal cover, and it is precisely since we are looking at the de-projectivised version of

the representation that brought us there in the first place!

6.2 Spins in Lorentz group

We state without proof the following relation related to the proper orthochronous Lorentz

group SO+(1, 3):

SO+(1, 3) =
SL(2,C)

Z2
(6.8)

In the lecture notes you have precisely looked at the representations of SL(2,C) and noted

that we can generated irreducible representations classified by two spins (j+, j−) ∈ Z
2 × Z

2 .

The reason for that, by the argument in the previous section, is the fact that the represen-

tations that we actually really want to look at are states in our quantum field theory, which

are intrinsically projective in nature. By looking at projective unitary representations on

SO+(1, 3), we can therefore look at the universal cover SL(2,C) and analyse its unitary

(de-projectivised) representations. This is why we have half-spins, i.e. our lovely fermions

in our theory!

6.3 Clifford Algebras and Gamma Matrices

With the intuition sketched out in the previous section, let us try and make things concrete.

The following discussion mainly follows [1].

We follow from the discussion of the representations of sonC. Recall that tensor powers of
the fundamental and anti-fundamental representations of sunC completely characterises all

the representations of sunC, but this is not the case for the representations of sonC. As a

matter of fact, only half of the representations of sonC arises in this way. As we have seen

above, this could be attributed to the different underlying topology of the two groups - the

missing representations are exactly the SpinmC reps where SpinmC → SOmC is a double

cover.

How do we generate this double cover then? The theory of projective representations, as

described above, seems to be hard to access from a construction point-of-view - where do

25You will need some sort of a strong continuity homomorphism Φ : G → U(H). You can read more

about this in [16].
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we even start? It turns out to be helpful to define something called Clifford Algebras. Each

complex Clifford algebra contains an orthogonal Lie algebra as a subalgebra - it is isomor-

phic either to a matrix algebra or a sum of two. This determines one or two representations

of the orthogonal Lie algebras, as we will see, which are exactly the representations that

we are missing from the tensor product constructions.

So, first a definition. In this section we fix V to be a vector space and B : V ×V → K to be

a symmetric bilinear form on V (here K is a field). To construct a corresponding quadratic

form Q, we can define

Q(x) = B(x, x) (6.9)

such that (V,Q) is a quadratic vector space over K. One can conversely reconstruct

the symmetric bilinear form B from Q by polarisation, i.e.

B(x, y) =
1

2
(Q(x+ y)−Q(x)−Q(y)) (6.10)

so we hereby denote Q and B interchangeably, writing Q(x) = Q(x, x).

Now we have the following definition.

Definition 6.7. Let A be an associative K-algebra and (V,Q) be a quadratic vector space.

A K-linear map ϕ : V → A is Clifford if ∀x ∈ V ,

ϕ(x)2 = Q(x)1A (6.11)

where 1A is the unit of A.

Definition 6.8. The Clifford algbera C = C(Q) = Cliff(V,Q) is an associative algebra

with unit 1 and is generated by V , with ∀v ∈ V

v · v = Q(v, v) · 1 (6.12)

Equivalently (if the characteristic of k is not 2), we have ∀v, w ∈ V ,

v · w + w · v = 2Q(v, w) (6.13)

A note about construction. The Clifford algebra can be constructed quickly by taking the

tensor algebra

T •(V ) =
⊕
n≥0

V ⊗n (6.14)

and setting

C(Q) =
T •(V )

I(Q)
(6.15)

Here I(Q) is the two-sided ideal generated by all elements of the form v ⊗ v −Q(v, v) · 1.
Clearly C(Q) satisfies the universal property. From this we can see that the dimension of

C is 2m where m = dim(V ) and that the canonical mapping V → C is an embedding, with

the basis of C(Q) being the products eI = ei1 · ei2 · ... · eik where ei are the basis of V . To

see this, in particular, we can check the following.
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Proposition 6.3. There is a natural embedding V ↪→ C(Q) which is the image of V = V ⊗1

under the canonical projection

πq : T
•(V )→ C(Q) , (6.16)

and this is an injection.

Proof. Say that an element φ ∈ T •(V ) is of pure degree s if φ ∈ V ⊗s. We want to show

that any element φ ∈ T •(V ) ∩ V is zero. Suppose this is not true. Then we can write

φ =
∑

i ai ⊗ (vi ⊗ vi +Q(vi))⊗ bi where we assume that ai and bi is of pure degree. Now

since φ ∈ V we must have that the expression is equal to zero, with the sum taken over

those indices with deg ai + deg bi maximal. Contracting with Q means
∑

i aiQ(vi) · bi = 0.

Proceed with induction to show φ = 0.

The Clifford Algebra has a universal property as follows. This also gives a categorical

definition of Clifford Algebras.

Proposition 6.4. The Clifford algebra can be defined to be the universal algebra with the

following property: If A is any associative algebra with unit and a linear mapping j : V → A

is given such that

j(v) · j(v) = Q(v, v) · 1, ∀v ∈ V , (6.17)

or equivalently ∀v, w ∈ V , (given that k has a characteristic not equal to 2,)

j(v) · j(w) + j(w) · j(v) = 2Q(v, w) · 1 (6.18)

then there should be a unique homomorphism of algebras from C(Q) to A extending j, i.e.

j extends uniquely to a K-algebra homomorphism j̃ : C(Q) → A, and C(Q) is the unique

associative K-algebra with this property.

Proof. Any linear map j : V → A extends to a unique algebra homomorphism j̄ : T •(V )→
A. Now Eq. (6.17) implies that j̄ = 0 on I(Q) so j̄ descends to C(Q). Suppose now B is

an associative K-algebra with unit and that ι : V → B is an embedding with the property

that any linear map j : V → A with the property in Eq. (6.17) extends uniquely to an

algebra homomorphism j̃ : A → B. Then the isomorphism from V ⊂ Q to ι(V ) ⊂ B

clearly induces an algebra isomorphism C(Q)
∼=−→ B.

The proposition above effectively states the following. Given an associative algebra with

unit A, together wiht a Clifford map i : V → C(Q) such that for every Clifford map

ϕ : V → A there is a unique algebra morphism Φ : C(Q) → A that makes the following

triangle commute.

V

C(Q) A

i ϕ

Φ
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Categorically, the Clifford Algebra is an initial object in the category Cliff(V,Q), which

has Clifford maps ϕ : V → · from a fixed vector space equipped with a quadratic form Q

as objects. The morphism from V → A to V → A′ is given by a commuting triangle

V

A A′
f

with f : A → A′ as a homomorphism of associative algebras. This initial object is unique

up to a unique isomorphism. In other words, the Clifford algebra C(Q) is universal for

Clifford maps to associative algebras. The construction via tensor algebra as before implies

the following statement. If ϕ : V → A is a Clifford map and Φ̃ : T •(V )→ A is the unique

extension of ϕ to the tensor algebra, then Φ̃ indeed annihilates the ideal I(Q) and therefore

factors through a unique map Φ : T •(V )/I(Q)→ A from the quotient. Therefore, we have

a commutative diagram:

V T •(V )

C(Q) A

i
Φ̃ϕ

Here i is really injective as the ideal only comes into play for V ≥⊗2.

6.3.1 Constructing Clifford algebras

The way we have been discussing about Clifford algebras is not very suitable for compu-

tations. Instead, we will discuss the way that Clifford introduced the algebras. This is the

way Clifford algebras are still taught in physics courses, following Dirac.

Traditionally, the discussion of Clifford algebras started with Dirac matrices.

Definition 6.9. Suppose {ei} is a K-basis for V , where i = 1, ...,dimV . The vector space

V is equipped with the symmetric bilinear form where B(ei, ej) = Bij = Bji. The Clifford

generators Γi is the image of ei under the map i : V → C(Q), which satisfy the relations

ΓiΓj + ΓjΓi = 2Bij1 (6.19)

where 1 is the unit in the Clifford algebra C(Q).

Following this, we can define Clifford algebras by using generators in the following manner.

Definition 6.10 (Clifford algebras - generators). An associative algebra over field K with

unity 1 is the Clifford algebra C(Q) of a non-degenerate quadratic form Q on V if it

contains V and K = K · 1 as distinct subspaces such that the following three conditions

hold:
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(i) v2 = Q(v) for any v ∈ V .

(ii) V generates C(Q) as an algebra over K.

(iii) C(Q) is not generated by any proper subspace of V .

We can immediately how the Dirac matrices furnishes a representation of the Clifford

algebra. We then define

Γij =
1

2
(ΓiΓj − ΓjΓi) (6.20)

as the product of two generators. More generally, we have

Γi1...ip =
1

p!

∑
σ∈Sp

(−1)σΓiσ(1)
...Γiσ(p)

(6.21)

where (−1)σ indicates the sign of the permutation in Sp. We then see that since C(Q)

is generated by V and the identity it is the linear span of 1, Γi, Γij ,... in total there are

1+ n+Cn
2 + ...Cn

n = 2n monomials. So dimC(Q) = 2dimV . This is the same dimension as

the exterior algebra
∧•V so we can establish a vector space isomorphism between the two.

In particular, if we use an orthonormal basis to generate C(Q), then the first condition in

the above Definition 6.10 then becomes

Γ2
i = 1, 1 ≤ i ≤ p, (6.22)

Γ2
i = −1, p < i ≤ p, (6.23)

ΓiΓj = −ΓjΓi, i < j. (6.24)

whilst condition (iii) becomes

Γ1...Γn ̸= ±1 (6.25)

This is important in constructing a representation of Clifford algebras in general dimen-

sions. Typically, this is needed in the discussion of supersymmetry and supergravity (and

spinors) in various dimensions. The construction typically involves a set of matrices called

Dirac matrices or Gamma matrices, defined as matrix representations of the Clifford

algebra in various dimensions. You should have seen Pauli matrices in your elementary

quantum mechanics courses:

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (6.26)

These matrices can generate a basis for Clifford algebras of arbitrary dimensions. Here

we follow the discussion in [17–19]. We construct the Euclidean γ-matrices from Gamma

matrices which are the basic building block of the matrix representations of the Clifford

algebras. We define (2k + 1)-matrices by the tensor products of k Pauli matrices to get a
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2k × 2k matrix representation as follows:

Γ
(k)
1 = σ1 ⊗ σ0 ⊗ ...⊗ σ0︸ ︷︷ ︸

k−1

, Γ
(k)
2 = σ2 ⊗ σ0 ⊗ ...⊗ σ0︸ ︷︷ ︸

k−1

,

Γ
(k)
3 = σ3 ⊗ σ1 ⊗ σ0 ⊗ ...⊗ σ0︸ ︷︷ ︸

k−2

, Γ
(k)
4 = σ3 ⊗ σ2 ⊗ σ0 ⊗ ...⊗ σ0︸ ︷︷ ︸

k−2

,

...

Γ
(k)
2k−1 = σ3 ⊗ ...⊗ σ3︸ ︷︷ ︸

k−1

⊗σ1 , Γ
(k)
2k = σ3 ⊗ ...⊗ σ3︸ ︷︷ ︸

k−1

⊗σ2 ,

Γ
(k)
2k+1 = σ3 ⊗ ...⊗ σ3︸ ︷︷ ︸

k

(6.27)

The matrices listed above can be generated using the recurring relations:

Γ
(k+1)
M = Σ

(k)
M ⊗ σ0 , M = 1, ..., 2k (6.28)

Γ
(k+1)
2k+i = Σ

(k)
2k+1 ⊗ σi , i = 1, 2, 3 (6.29)

which gives {
Γ
(k)
M ,Γ

(k)
N

}
= 2δMN (6.30)

So then we have the following definition.

Definition 6.11 (Gamma matrices). The Gamma or Dirac matrices are matrix repre-

sentations of the Clifford algebras, i.e. the map: Γ : C(Q) → GL(C2k) where we map the

generators eM 7→ ΓM . The representation is faithful when d = 2k and non-faithful when

d = 2k + 1 where Γ(ϵ) = Γ
(k)
1 ...Γ

(k)
2k+1 = ik.

We will find Gamma matrices extremely helpful later when we construct spinors in spaces

of Euclidean and Lorentzian signatures.

6.3.2 Z2-grading

Let us return to the tensor construction of the Clifford algebras. Since the ideal I(Q) is not

homogeneous, C(Q) does not inherit a Z-grading from T •(V ). However, notice that the

ideal I(Q) is generated by elements of an even degree. This means the Clifford algebra does

inherit a Z2 grading. To study this grading recall the following definitions from elementary

algebra.

Definition 6.12. A graded ring is a ring that is decomposed into a direct sum of additive

groups

R =

∞⊕
n=0

Rn = R0 ⊕R1 ⊕R2 ⊕ ... (6.31)

such that

RmRn ⊆ Rm+n (6.32)

for all nonnegative integers m and n.
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Definition 6.13. An associative algebra A over a ring R is graded if it is graded as a

ring.

So we can now go back to Clifford Algebras. Consider the automorphism α : C(Q)→ C(Q)

which sends α(v) = −v on V . Since α2 = id, the ideal I(Q) is generated by elements of an

even degree, and hence Clifford algebra inherits a Z2 grading:

C(Q) = C0(Q)⊕ C1(Q) (6.33)

where Ci(Q) =
{
φ ∈ C(Q)

∣∣α(φ) = (−1)iφ
}
are the eigenspaces of α. Since α is a homo-

morphism, we have

Ci(Q) · Cj(Q) ⊂ Ci+j(Q) (6.34)

with the indices taken modulo 2. This Z2-grading plays an important role in the analysis

and application of Clifford algebras. In particular, C0(Q) is often called Ceven(Q) and is a

subalgebra of dimension 2m−1, where as C1(Q) is often called Codd(Q).

6.3.3 Grading and exterior algebras

The Z2-gradedness of the Clifford algebra is very different from the graded nature of the

tensor algebra which inherently has a Z-graded structure. To see this, define F̃ as

F̃r =
∑
s≤r

V ⊗s . (6.35)

This has the property

F̃r ⊗ F̃s ⊂ F̃r+s . (6.36)

The tensor algebra therefore has a natural filtration

F̃0 ⊂ F̃1 ⊂ ... ⊂ T •(V ) , (6.37)

which makes the tensor algebra into a filtered algebra. Every filtered algebra has an

associated graded algebra. For the tensor algebra with the canonical filtration described

above, the associated graded algebra is described by

G̃p = F̃p/F̃p−1 (6.38)

Then G̃• is a graded algebra where the product map is defined by

G̃p × G̃q → G̃p+q . (6.39)

The canonical filtration of the tensor algebra T •(V ) defines a natural filtration on the

Clifford algebra C(Q). Suppose πq : T •(V ) → T •(V )/I(Q) where I(Q) is the ideal that

generates the Clifford algebras. Then F i = πq(F̃ i) naturally has a natural filtration,

F0 ⊂ F1 ⊂ F2 ⊂ ... , (6.40)

and naturally the associated graded algebra Gr = Fr/Fr−1 naturally inherits the filtration.

We now have the following proposition.
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Proposition 6.5. For any quadratic form Q, the associated graded algebra of C(Q) is

naturally isomorphic to the exterior algebra
∧•V .

Proof. The map
⊗r V

πr−→ Fr → Gr = Fr/Fr−1 given by vi1⊗...⊗vir 7→ [vi1 ...vir ] descends

to a map
∧

rV → Fr by the property in Eq. (6.18). (Note that when the characteristic of

K is 2 then we will have to use the other condition.) This map is surjective and gives a

homomorphism of graded algebras
∧•V → G•. It remains to check the map is injective. The

kernel of
⊗r V → Gr consists of the r-homogeneous pieces of elements φ ∈ Iq(V ) of degree

less than r. Any such φ can be written as a finite sum φ =
∑
ai⊗(vi ⊗ vi + q(vi))⊗bi where

vi ∈ V and where we may assume that the ai and bi are of pure degree with deg ai+deg bi ≤
r − 2. The r-homogeneous part of φ is then of the form φr =

∑
ai ⊗ vi ⊗ vi ⊗ vi where

deg ai + deg bi = r − 2 for each i. The image of φ in the exterior algebra is however zero

as vi ∧ vi = 0. So the map
∧

rV → Gr is injective.

Note that the proposition above gives a canonical vector space isomorphism that is com-

patible with the filtrations as follows,∧•V → C(Q) . (6.41)

The map in Eq. (6.41) is of course not an isomorphism of algebras unless q = 0. However

the map is indeed canonical so we can discuss embeddings of the form
∧

rV ⊂ C(Q) for all

r ≥ 0. To see that the isomorphism is only true when q = 0, consider the Z2-grading on

the tensor algebra defined with T •(V ) = T •(V )0 + T •(V )1 where

T •(V )0 =
⊕
k≥0

V ⊗2k , T •(V )1 =
⊕
k≥0

V ⊗2k+1 . (6.42)

where the Z2-grading is the reduction mod-2 of the Z-grading of the tensor algebra as

discussed above. This reduction makes the ideal Iq homogeneous, and hence the projection

T •(V )→ C(Q) restricts to projections TVi → Ci for i = 0, 1. Note however that for i = 1

this is only a projection of vector spaces, since neither TV1 nor C1 are algebras.

Now the canonical filtration of the tensor algebra T •(V ) defines a filtration on C(Q) as

follows. By filtering T •(V )0 and T •(V )1 separately, i.e.

F2kT (V )0 =
⊕
l≤k

V ⊗2l , F2k+1T (V )1 =
⊕
l≤k

V ⊗2l+1 (6.43)

such that

0 ⊂F0T (V )0 ⊂ F2T (V )0 ⊂ ... (6.44)

0 ⊂F1T (V )1 ⊂ F3T (V )1 ⊂ ... (6.45)

Now under the projections TV0 → C0 and TV1 → C1, we can similarly identify the filtra-

tions of the Clifford algebra as

0 ⊂F0C0 ⊂ F2C0 ⊂ ... (6.46)

0 ⊂F1C1 ⊂ F3C1 ⊂ ... (6.47)
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We will henceforth use the shorthand FpC as FpC0 and FpC1 if p is even and odd respec-

tively. Now we note that FpC/Fp−2C ∼=
∧

pV as the corrections in replacing xy by −yx
where x, y ∈ V involve terms of degree 2 less. The corrections are 0 when q = 0, so we can

identify Cl(V, 0) ∼=
∧•V , exactly as mentioned above.

It is possible to understand the relation between the Clifford and exterior algebras in a dif-

ferent way which does not involve filtrations. The bilinear form B defines a map ♭ : V → V ∗

where x 7→ B(x, ·). The map flat is an isomorphism if and only if B is non-degenerate.

The inverse is typically defined as ♯ so together with the map ♭ they are referred to as the

musical isomorphisms induced from the inner product B. We can then define a linear map

ϕ : V → End
∧•V by

ϕ(x)α = x ∧ αιxα (6.48)

where ιx is the unique odd derivation defined by ιx1 = 0 and ιxy = B(x, y) for y ∈ V . So

on a monomial we have,

ιx (y1 ∧ ... ∧ yp) =
p∑

i=1

(−1)i−1B(x, yi)y1 ∧ ... ∧ ŷi ∧ ... ∧ yp , (6.49)

where the hat denotes omission. Then we can extend this linearly to all of
∧•V as in the

following lemma.

Lemma 6.1. The map ϕ : V → EndV in Eq. (6.48) is Clifford.

Proof. For every x ∈ V and α ∈ End
∧•V , we have

ϕ(x)2α = ϕ(x) (x ∧ α− ιxα)
= x ∧ x ∧ α− x ∧ ιxα−Q(x)α+ x ∧ ιxα+ ιxιxα

= −Q(x)α , (6.50)

where x ∧ x = 0 = ιxιx and ιx(x ∧ α) = Q(x)α− x ∧ ιxα.

By the universality of Clifford algebras we can then extend this to the algebra homomor-

phism uniquely,

Φ : C(Q)→ End
∧•V (6.51)

So composing this with the evaluation at 1 ∈
∧•V gives a linear map Φ1 : C(Q) →

∧•V .

This map obeys Φ1(1) = 1 and if x ∈ V then Φ1(i(x)) = x where i : V → C(Q). Since i is

injective from the construction of C(Q), Φ1 ◦ i is also injective. By further computations,

we then get

Φ1(i(x)i(y)) = x ∧ y −B(x, y) , (6.52)

and

Φ1(i(x)i(y)i(z)) = x ∧ y ∧ z −B(x, y)z +B(x, z)y −B(y, z)x , (6.53)

so Φ1 surjects onto
∧•V . This is a vector space isomorphism with the inverse map defined

by

y1 ∧ ... ∧ yp 7→
1

p!

∑
σ∈Sp

(−1)σyiσ(1)
∧ ... ∧ yiσ(p)

(6.54)

which gives an explicit quantisation of the exterior algebra.
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6.3.4 Clifford algebras as representations of sonC

It is clear from the construction that Clifford algebras are associative algebras. As a results

it determines a Lie algebra with the bracket defined by the associative multiplication. How

are Clifford algebras related to the representations of somC? To see this we will first embed

the Lie algebra so(Q) inside the Lie algebra of the even part of the Clifford algebra and

from there identify C(Q) with one or two copies of matrix algebras.

Let us see how this works in practice. We first need to make an explicit isomorphism of∧
2V with so(Q), which is defined as

so(Q) = {X ∈ End(V ) |Q(Xv,w) = −Q(v,Xw) ∀v, w ∈ V } . (6.55)

Define the map

φa∧b(v) = 2 (Q(b, v)a−Q(a, v)b) , (6.56)

which gives the isomorphism ϕ :
∧

2V → so(Q) ⊂ End(V ) with a ∧ b 7→ φa∧b. One can

check that the bracket on
∧

2V makes this an isomorphism of Lie algebras with the Clifford

algebra26, allowing the map ψ :
∧

2V → C(V,Q) to be defined by

ψ(a ∧ b) = 1

2
(a · b− b · a) = a · b−Q(a, b) . (6.57)

This is an injective embedding, which shows that the following Lemma.

Lemma 6.2. The mapping ψ ◦ φ−1 : so(Q)→ C(Q)even embeds so(Q) as a Lie subalgebra

of C(Q)even.

Proof. See discussion above.

The reason why the embedding only goes into the even part is because, simply, C(Q)odd is

indeed not an algebra. You can also see that in Eq. (6.57) the map is defined with elements

of even degree. By looking at the basis elements we can then see that ψ is an embedding

and the map exactly maps the exterior algebra to the even part of the Clifford algebra.

What remains is to identify the subalgebra of C(Q)0 or C(Q)even, the image of so(Q) as

matrix algebras. Let us separate this into two cases.

Case 1: n = dimV is even.

We first decompose V into two n-dimensional isotropic spaces for Q,

V =W ⊕W ′ . (6.58)

Then we have the following lemma.

Lemma 6.3. The decomposition V =W ⊕W ′ determines an isomorphism of algebras,

C(Q) ∼= End(
∧•W ) (6.59)

where
∧•W =

∧
0W ⊕ ...⊕

∧
nW .

26This is done by checking the brackets on [a ∧ b, c ∧ d] and [a · b, c · d].
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Proof. Let us try and construct the map φ : C(Q) → E = End(
∧•W ). The map φ is the

same as defining a linearly mapping V → E with the condition in Eq. (6.18). We must

therefore construct maps l :W → E and l′ :W ′ → E such that

l(w)2 = 0 = l′(w′)2 (6.60)

l(w) ◦ l′(w′) + l′(w′) ◦ l(w) = 2Q(w,w′)I , (6.61)

for any w ∈ W , w′ ∈ W . For each w ∈ W , let Lw ∈ E be the left multiplication by w on

the exterior algebra
∧•W ,

Lw(ξ) = w ∧ ξ, ξ ∈
∧•W . (6.62)

For any ϑ ∈W ∗, let Dϑ ∈ E be the derivation of
∧•W such that,

Dϑ(1) = 0 (6.63)

Dϑ(w) = ϑ ∈
∧0W = C (6.64)

Dϑ(ζ ∧ ξ) = Dϑζ ∧ ξ + (−1)deg(ζ)ζ ∧Dϑ(ξ) , (6.65)

where w ∈W =
∧

1W . i.e. Explicitly,

Dϑ(w1 ∧ ... ∧ wr) =
∑
i

(−1)i−1ϑ(wi) (w1 ∧ ... ∧ ŵi ∧ ... ∧ wr) . (6.66)

Now we can set

l(w) = Lw , l′(w′) = Dϑ , (6.67)

where ϑ ∈ W ∗ is defined by ϑ(w) = 2Q(w,w′), ∀w ∈ W . It is straightforward to show

that the maps defined obeys the requirements, as well as for ζ ∧ ξ if they obey for ζ and

ξ separately. The map is clearly an isomorphism and one can see that by its action of a

basis.

Now note that there exists a decomposition of the exterior powers into even and odd parts∧•W =
∧

evenW ⊕
∧

oddW where C(W )even respects the splitting. From Lemma 6.3, we

then have the isomorphism,

C(Q)even ∼= End(
∧evenW )⊕ End(

∧oddW ) . (6.68)

Combining this with Lemma 6.2, we then have an embedding of Lie algebras,

so(Q) ⊂ C(Q)even ∼= gl(
∧evenW )⊕ gl(

∧oddW ) , (6.69)

and we find that there are two representations of so(Q) = so2nC. We denote the two

representations by,

S+ =
∧evenW , S− =

∧oddW . (6.70)

Proposition 6.6. The representations S± are the irreps of so2nC with highest weights

α = 1
2(L1 + ...+ Ln) and β = 1

2(L1 + ...+ Ln−1 − Ln). More precisely, we have,

S+ = Γα , S− = Γβ , if n is even ; (6.71)

S+ = Γβ , S− = Γα , if n is odd . (6.72)
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Proof. We need to show that the natural basis vectors eI = ei1 ∧ ... ∧ eik for
∧•W are

weight vectors. Tracing through the isomorphisms, we find that Hi = Ei,i − En+i,n+i in

h ⊂ so2nC corresponds to 1
2(ei ∧ en+i) in

∧
2V , which corresponds to 1

2 (ei · en+i − 1) in

C(Q), and this maps to,

1

2

(
Lei ◦D2e∗i

− I
)
= Lei ◦De∗i

− 1

2
I ∈ End(

∧•W ) . (6.73)

We can compute,

Lei ◦De∗i
(eI) =

{
eI if i ∈ I
o if i ̸∈ I

(6.74)

So eI spans a weight space with weight 1
2

(∑
i∈I Li −

∑
j ̸∈I Lj

)
. All such weights with given

|I| mod 2 are congruent by the Weyl group (they are equivalent up to transformations of

the Weyl group), so S+ =
∧

evenW and S− =
∧

oddW must be an irreducible representation.

The highest weights are then straightforward to read off - the one for
∧

evenW is α = 1
2

∑
i Li

if n is even and β if n is odd.

Definition 6.14. The representations S± are the half-spin representations of so2nC,
and S = S+ ⊕ S− =

∧•W is called the spin representation. Elements of S are known

as spinors.

We are going to come back to spinor representations in the next section.

Case 2: n = dimV is odd.

This time we decompose the space V as follows,

V =W ⊕W ′ ⊕ U ., (6.75)

where W and W ′ are n-dimensional isotropic spaces and U is a one-dimensional space

perpendicular to them. For the standard Q on C2n+1 these are spanned by the first n,

second n, and the last basis vector. We then have the following lemma.

Lemma 6.4. The decomposition V =W ⊕W ′⊕U determines an isomorphism of algebras,

C(Q) ∼= End(
∧•W )⊕ End(

∧•W ′) . (6.76)

Proof. We can proceed exactly as the even case, as in Lemma 6.3. The only difference

is with the element u0 where Q(u0, u0) = 1. We send u0 to the endomorphism that is

the identity on
∧

evenW and minus the identity on
∧

oddW . This involution then skew

commutes with all Lw and Dϑ, which means the map V → E = End(
∧•W ) determines an

algebra homomorphism from C(Q)→ E. The map for End(
∧•W ′) is similar but with the

roles of W and W ′ reversed. The maps are isomorphic by checking the basis elements.

From Lemma 6.4 we see that the subalgebra C(Q)even ⊂ C(Q) ia mapped isomorphically

onto the factors,

C(Q)even ∼= End(
∧•W ) (6.77)
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which gives a representation S =
∧•W of Lie algebras,

so2n+1C = so(Q) ⊂ C(Q)even ∼= gl(
∧•W ) = gl(S) . (6.78)

So now we have the following proposition.

Proposition 6.7. The representation S =
∧•W is the irrep of so2n+1C with the highest

weight

α =
1

2
(L1 + ...+ Ln) . (6.79)

Proof. This is similar to the even case - each eI is an eigenvector with weight 1
2

(∑
i∈I Li −

∑
j ̸∈I Lj

)
.

All the weights are congruent by the Weyl group so it must be an irrep with highest weight

α.

We have therefore constructed the spin representations of sonC.

6.4 Classification of Clifford algebras

As we have seen above, Clifford algebras are extremely useful. There exists a classification

that classifies real and complex Clifford algebras. The details of which could be found in

[20] and I will refer to that for the full classification27.

6.5 Spinor Representations and Clifford Algebras

Having discussed the spin representations of sonC, it is prudent to discuss its relation with

the spinors in this section.

6.5.1 Pin and Spin Groups

First, let us define something known as pin and spin groups.

Definition 6.15. The multiplicative group of units in the Clifford algebra is defined

to be the subset

C×(Q) =
{
ϕ ∈ C(Q)

∣∣∃ϕ−1, ϕ−1ϕ = ϕϕ−1 = 1
}
. (6.80)

This group contains all elements v ∈ V with Q(v) ̸= 0.

The group of units always acts naturally as automorphisms of the algebra, i.e. the adjoint

representation,

Ad : C×(Q)→ Aut(C(Q)) , (6.81)

which is given by,

Adϕ(x) = ϕxϕ−1 . (6.82)

Taking the derivation of this map gives the usual Lie bracket action ady(x) = [y, x]. Hiterto

we have assumed that the characteristic of the field could be any integer. Let us assume

from now that the chracterisitc of the field k ̸= 2. Then we have the following important

proposition.

27If I have time in the future I will come back to add more information but this is not relevant to the

current discussion.
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Proposition 6.8. Let v ∈ V ⊂ C(Q) be an element with Q(v) ̸= 0. Then Adv(V ) = V ,

and ∀w ∈ V , we have,

−Adv(w) = w − 2
Q(v, w)

Q(v)
v . (6.83)

Proof. We have that v−1 = − v
Q(v) , so

−Q(v)Adv(w) = −Q(v)vwv−1 = vwv = −v2w− 2Q(v, w)v = Q(v)w− 2Q(v, w)v . (6.84)

Naturally, this lead us to consider the subgroup of elements ϕ ∈ C×(Q) such that Adϕ(V ) =

V . From Proposition 6.8 above, we see that the group contains all the elements v ∈ V with

Q(v) ̸= 0, and when this happens the transformation Adv preserves the quadratic form Q,

(Ad∗v Q)(w) = Q(Adv(w)) = Q(w) , (6.85)

for all w ∈ V . We define P (Q) ⊂ C(Q) to be the subgroup generated by the elements

v ∈ V with Q(v) ̸= 0. Note that then there is a representation,

P (Q)→ O(V,Q) , (6.86)

where

O(V,Q) = {λ ∈ GL(V ) |λ∗Q = Q} (6.87)

is the orthogonal group of the form Q.

We are now ready to explore the important subgroups of P (Q).

Definition 6.16. The Pin group is the subgroup of P (Q) generated by the elements

v ∈ V with Q(v) = ±1, i.e.

Pin(V ) =
{
v1 · ... · vm ∈ C(Q)

∣∣ vj ∈ Sn−1 ⊂ Fn,m ∈ N
}

(6.88)

Definition 6.17. The Spin group is simiarly defined as,

Spin(V ) = Pin(n) ∩ C0(Q) (6.89)

=
{
v1 · ... · vm ∈ C(Q)

∣∣ vj ∈ Sn−1 ⊂ Fn,m ∈ 2N
}

(6.90)

Note that from the definition of the Pin group, the inverse element to v1 · ... · vm is,

(v1 · ... · vm)−1 = (−vm)...(−v1) ∈ Pin(V ) (6.91)

Let us take a deep look at Eq. (6.83). Notice that the right hand side of the equation

is basically the reflection Rv(x) of the vector x ∈ V where v is the vector marking the

perpendicular direction of the reflection hyperplane. To remove this sign we therefore

consider the following action.
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Definition 6.18. The twisted adjoint representation is the map Ãd : C×(Q) →
GL(C(Q)) where,

Ãdϕ(y) = α(ϕ)yϕ−1 . (6.92)

For even elements ϕ, Ãdϕ = Adϕ. We also have Ãdϕ1ϕ2 = Ãdϕ1 ◦ Ãdϕ2 . Explicitly,

Ãdv(w) = w − 2
Q(v, w)

Q(v)
v . (6.93)

We state without proof the following result.

Theorem 6.5 (Cartan-Dieudonné). Every g ∈ O(V ) is the product of a finite number of

reflections g = Ru1 ◦ ... ◦Rur along the null lines where Q(ui) ̸= 0 and r ≤ dimV .

Proof. See [21].

We note that the twisted adjoint action must define a group homomorphism Ãd : Pin(V )→
O(V ). It follows from the Cartan-Diedonné Theorem 6.5 that Ãd is surjective. But what

is the kernel of Ãd?

Proposition 6.9. Suppose V is finite dimensional and Q is non-degenerate. Then the

kernel of the homorphism Ãd : P̃ (V,Q)→ GL(V ) is the group K× of non-zero multiples of

1. Here the group P̃ (V,Q) is defined as,

P̃ (V,Q) =
{
ϕ ∈ C×(V,Q)

∣∣∣ Ãdϕ(V ) = V
}
, (6.94)

where P (V,Q) ⊂ P̃ (V,Q).

Proof. See [20] for a complete proof. The proof is also outlined in [22].

[20] goes into a bit more detail in how you would define the homomorphism from the group

P̃ (V,Q) to the orthogonal group O(V ) (see Propositions 2.5 and Corollary 2.6 of [20]).

It also shows how the images Ãd(Pin(V,Q)) and Ãd(Spin(V,Q)) is a normal subgroup of

O(V ) (see Proposition 2.8 of [20]). To summarise there are two exact short sequences.

Theorem 6.6. Let V be a finite-dimensional vector space over a field K and Q a non-

denerate quadratic form on V . Suppose the field K of characteristic ̸= 2 is spin, i.e. at

least one of the two equations t2 = a and t2 = −a can be solved in K for each non-zero

element a ∈ K×. Then there are two short exact sequences.

0→ F → Spin(V,Q)
Ãd−−→ SO(V )→ 1 , (6.95)

0→ F → Pin(V,Q)
Ãd−−→ O(V )→ 1 , (6.96)

where

F =

{
Z2 = {1,−1} if

√
−1 ̸∈ K

Z4 = {±1,±
√
−1} otherwise

(6.97)

The sequences above hold for general fields provided that SO(V ) and O(V ) are replaced

by appropriate normal subgroups of O(V ) (since the map Ãd maps to normal subgroups

of O(V ) in general and field K, which is spin, solves the equation t2Q(v) = ±1 so every

v ∈ V × can be renormalised to have Q(v) = 1).
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Proof. See [20] Theorem 2.9. The details of the field being spin is not relevant if we restrict

to K = R, C as both fields are spin.

The real case of the above Theorem 6.6 is reduced to the simple short exact sequences,

0→ Z2 → Spinr,s → SOr,s → 1 , (6.98)

0→ Z2 → Spinr,s → SOr,s → 1 , (6.99)

for all (r, s), where the subscripts denote the signature of the quadratic form Q. In partic-

ular, for SOn = SOn,0 = SO0,n, we have

0→ Z2 → Spinn
Ãd−−→ SOn → 1 , (6.100)

where the map Ãd acts as the universal covering map of SOn for all n ≥ 3. From this

we see that the Pin and Spin groups are covering groups of the orthogonal group. We

will now examine the representations of the Pin and Spin groups, which in term will give

representations of the orthonal groups. We will see how this unifies with the picture we

have taken in two subsections ago.

6.5.2 Spinor Representations

Before we begin let us recall what representations of an algebra is.

Definition 6.19. SupposeA is an associative algebra and K = R,C or H. A K-representation
of A is a K-linear homomoprhism ρ : A → EndK(E) for some K-vector space E. Two K-
representations ρ : A→ EndK(E) and ρ′ : A→ EndK(E

′) are equivalent if there exists a

K-linear isomorphism f : E → E′ such that the following triangle commutes:

A

EndK(E) EndK(E
′)

ρ ρ′

Ad f

where Ad f : EndK(E) → EndK(E
′) is defined as ϕ 7→ f ◦ ϕ ◦ f−1, so f ◦ ρ(a) = ρ′(a) ◦ f

for all a ∈ A.

We can now define the following representations.

Definition 6.20. A pinor representation of Pin(V ) is the restriction of an irreducible

representation of C(Q). Similarly, a spinor representation of Spin(V ) is the restriction

of an irreducible representation of C0(Q)

We here note that most representations of Clifford algebras (similar to Lie algebras) are

reducible. The volume element plays a key role in determining irreducible representations.

In particular, since the volume element is used in determining the classification of real and

complex Clifford algebras [20], one can use it to determine the properties of irreducible

real and complex representations of Clifford algebra. You can read about the details of the
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classfication and determination of irreducible representations in [20] and [22]. The crux of

the discussion there is that one must distinguish between (broadly) even and odd-dimension

V cases, similar to our discussion above. In particular, let us suppose Cln is the Clifford

algbera of Rn, and its complexification is Cln = Cln ⊗R C. For the standard basis ei of Rn,

define

zj =
1

2
(e2j−1 − ie2j) ∈ Cln (6.101)

for j = 1, ...,m, n = 2m and z̄j be its conjugate. Then the span

Σ = {zj1 · ...zjk · z̄1 · ... · z̄m | k = 0, ...,m, 1 ≤ j1 ≤ ... ≤ jk ≤ m} , (6.102)

defines a complex vector subspace of Cln of dimension 2m. The space that is known as

the spinor space with its elements being spinors28. The spinor space is invariant under

Clifford multiplications (multiplication by ej). We further define Σ± to be the spans where

k is even and odd respectively. The sign of the space is then the chirality of the space,

and by setting the above notation E = Σ in Definition 6.20, we now have reobtained our

definitions of spinor representations in terms of action on spinor spaces. We then have the

following propositions.

Proposition 6.10. Suppose the complex spinor representation is ∆C
n : Spinn → GLC(Σ)

which is given by restricting an irreducible complex representation Cln → HomC(Σ,Σ) to

Spinn ⊂ Cl0n ⊂ Cln. Then for n add this definition is indenpedent of which irrep of Cln
is used, and that the representation ρC

n is irreducible. When n is even then there is a

decomposition,

∆C
n = ∆C+

n ⊕∆C−
n , (6.103)

i.e. into a direct sum of two inequivalent irreducible complex representations of Spinn.

Proof. See Proposition 5.15 of [20], which uses the argument for the real case. For more

information one can also look at [23].

We now see how this is exactly the same as how we have defined spinor representations

to start with. This unifies the two pictures of spinor representations in [1] and in [20] -

the subspaces in [1] are exactly the Spin(Pin) groups that are defined at the start of this

subsection.

6.5.3 Weyl, Dirac, Pauli and Majorana Spinors

Physicists like calling spinor with names that confuse mathematicians. In this section I will

clarify the relationship between the spin(or) representations we have seen in the previous

section with the ones often defined in a hand-waving manner in the physics literature. In

the following I will fix V to be a vector space where spinors live.

Case 1: n = dimV is odd.

28Note very carefully that the spinor space Σ dimensions has nothing to do with the dimensions of V , the

vector space where we have defined the Clifford algebra. This is important for the classification of spinors

in the next subsection.
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I want to cover the odd case first as this is a bit easier. The spin representations are defined

as (n = p+ q),

∆n : Spinp,q → GLC(Σ) , (6.104)

where Σ is the spinor space. We note that we can design the map ∆n to map to a subspace

of the spinor space defined above. We then have the following ‘definitions’.

Definition 6.21. For p+ q = dimV odd, we have the following spinors.

• dimΣ = 1: This is the scalar representation, the complexified spin group acts on

the space of complex scalars C.

• dimΣ = dimV : This is the vector representation, so the complexified spin group

acts on the space of complexified vectors CdimV .

• dimΣ = m, so the action of the spin group is represented by complex matrices

M ∈ Mat(m,C). This is called the spin-12 representation, the spinors are known

as Pauli spinors.

Ah, that is exactly what we called Pauli spinors. The easiest case is to look at the spinor

representations of so3 which represents the Clifford algebra as Pauli spinors (and transfor-

mations as Pauli matrices).

Case 2: n = dimV is even.

Now we move on to the case where n is even. From the analysis of the odd case we have for

each separate decomposition Σ± a scalar representation, a set of spin-12 representations and

a vector representation. Now we need to consider the pair of irreducible representations.

Definition 6.22. For p+ q = dimV even, we have the following spinors.

• 0⊕ 0 = (0, 0): This is the scalar representation acting on the space C⊕ C.

• 1
2 ⊕ 0 = (12 , 0): This is the left spin-12 representation which acts on the space of

left Weyl spinors.

• 0⊕ 1
2 = (0, 12): This is the right spin-12 representation which acts on the space of

right Weyl spinors.

• (12 , 0)⊕ (0, 12): This is the Dirac representation which acts on the space of Dirac

spinors. This can be viewed as two Weyl spinors stacked on top of each other.

• (12 ,
1
2): This is called the vector representation, where the spin group acts on the

space of complexified vectors.

We note that the Weyl spinors are indeed the building blocks of spinor representations in

this case. This addresses how the complicated spinor definitions are related to the spinors

you have left in Quantum Field Theory courses 29!

29Majorana spinors require the definition of a symplectic structure. I will not cover the details here but

please refer to [24].
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6.5.4 Spin Structures

To fully address the mathematical structures one needs to also define something known as

spin structures and spin bundles. Since this is completely unrelated to our main discussion,

I will leave the interested amongst you to have a go at [20, 22, 23]. This concludes our

excursion into spinors!
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7 Correspondence between Lie Groups and Lie Algebras

In the lectures we have established that the following facts.

1. The tangent map e of a group homomorphism is a Lie algebra homomorphism, and

vice versa.

2. Lie groups can be recovered from Lie algebras using the exponential map.

Effectively what this says is that there is a natural correspondence between Lie groups and

Lie algebras. However, from the Lie algebra isomorphism discussion we have seen that in

fact the Lie algebra su(2) and so(3) are isomorphic to one another. We also happen to

know that SU(2) as a real Lie group is a universal (2:1) covering of the Lie group SO(3).

Is there a more precise statement of the facts as discussed in the lectures? In particular,

what kind of manifold will I get if I exponentiate the so(3) and su(2) real Lie algebras?

The answer lies again in the global construction of Lie groups. The statement made in the

lectures follows Lie’s original argument - the construction is local. In this section, we will

discuss the consequences of the exponential map in the global setting, and fully complete

the correspondence discussion set out in the notes.

7.1 Lie Brackets and Flows

The first question to address is why the tangent map e of a group homomorphism is a Lie

algebra homomorphism. Additionally there is a side question - what is the need of defining

a left-invariant vector field, when we can locally define vector fields at the tangent space

of identity e?

To answer these two questions we must first go back and define what an integral curve, a

flow and vector fields are. To do this I will go a bit deeper - is there a more general notion

for tangent spaces at a point? Turns out there is mathematical notion for the ‘collection

of tangent spaces’ TpM of the manifold M , typically known as a tangent bundle. This will

be very useful in our discussion (and typically covered in a ‘second’ course in differential

geometry) so here is the definition. Note throughout this section we will fix M to be a

smooth n-manifold30.

Definition 7.1. The tangent bundle of M , denoted by TM , is loosely the disjoint union

of the tangent spaces at all points of M ,

TM =
∐
p∈M

TpM , (7.1)

where TpM denotes the tangent space at p ∈M .

More accurately, the tangent bundle of M TM is defined as a smooth topological space

with the following data.

30The notion of smoothness is defined in Andre’s notes. If it is not clear then have a look at [7].
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• There is a natural surjective projection map π : TM → M . Denoting the points

of TM as the ordered pair (p, v) where p ∈M and v ∈ TpM , then π(p, v) = p.

• Suppose {Ui}i∈I is an open cover of M (here I is an indexing set). For each i there

exists a diffeomorphism

Φi = π−1(Ui)→ Ui × Rn , (7.2)

such that pr1 ◦Φi = π and for all i, j the map Φi ◦Φ−1
j has the form (Ui∩Uj)×Rn →

(Ui ∩ Uj)× Rn where

(x, v ∈ Rn) 7→ (x, gji(x)(v)) (7.3)

for some smooth map gji : Ui ∩Uj → GL(n,R). This smooth map gij is precisely the

transition map defined between the two charts.

There is of course the notion of a vector bundle, which we now can define below.

Definition 7.2. A vector bundle of M of rank k π : E → M is defined as a smooth

topological space with the following data.

• There is a natural surjective projection map π : E → M . Denoting the points of

TM as the ordered pair (p, v) where p ∈M and v ∈ E, then π(p, v) = p.

• Suppose {Ui}i∈I is an open cover of M (here I is an indexing set). For each i there

exists a diffeomorphism

Φi = π−1(Ui)→ Ui × Rk , (7.4)

such that pr1 ◦Φi = π and for all i, j the map Φi ◦Φ−1
j has the form (Ui∩Uj)×Rn →

(Ui ∩ Uj)× Rn where

(x, v ∈ Rk) 7→ (x, gji(x)(v)) (7.5)

for some smooth map gji : Ui ∩ Uj → GL(k,R).

The only thing that has changed is the dimension of the total space E and the transition

maps gji which are no longer directly related to the coordinate transformations when we

defined different charts. We can then define a vector field as follows.

Definition 7.3. A section on E is a map s :M → E such that s ◦ π = idM . A section of

TM is a (rough) vector field on M . If the restrictions of X to the coordinate chart on

M is smooth and the component functions with respect to this chart is also smooth then

the vector field is smooth.

Now we see how the notion of Lie brackets can be defined naturally on vector fields. To

see this first note that (see Proposition 8.14 of [7]) if X is a smooth vector field, then for

every f ∈ C∞(M) function, then the function Xf is smooth on M . We can then apply

another smooth vector field Y onto this function to get f 7→ Y Xf - but this does not in

general satisfy the product rule so cannot be a vector field. The way to do this is to define

something known as the Lie bracket of X and Y ,

[X,Y ]f = XY f − Y Xf (7.6)
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This operator now is a vector field and gives the map [X,Y ] : C∞(M) → C∞(M). It is

then a general question whether the set of vector fields {Xi} form a Lie algebra (the answer

is it does... but we need to wait). To see this let us return to what a flow is.

Definition 7.4. Suppose V is a vector field onM . An integral curve of V is a differentiable

curve γ : J →M such that

γ′(t) = Vγ(t) ∀t ∈ J . (7.7)

The point γ(0) is called the starting point of γ if 0 ∈ J .

Integral curves are the curves generated by moving along the vector field - the curve is

entirely defined by the vector field V so given a starting point you will know what the

curve is. Another way to visualise this is as follows. Suppose for each point p ∈ M ,

V has a unique integral curve starting at p defined for all t ∈ R. We can define a map

θt : M → M by sending p ∈ M to the point which is obtained after transporting t units

along the integral curve defined by V . This motivates the following definition.

Definition 7.5. A flow domain is an open neighbourhood U of 0 ×M in R ×M such

that for each p ∈ M the set U ∩ (R × {p}) is connected (i.e. it is an open interval around

0)31.

A local flow of a vector field V is a smooth map θ : U → M where U is a flow domain,

and satisfying the following two conditions.

• θ(0, ·) = idM .

• d
dtθ(t, p) = V (θ(t, p)), ∀(t, p) ∈ U .

It is a global flow if U = R×M . For shorthand write θt for θ(t, ·).

Defined in the above manner, the flow θ as a continuous map then automatically satisfies

θt ◦ θs = θt+s. In that sense θ−t = (θ−1)t. One can also define the map as one with the

condition above (together with θ0 = p are known as the group laws of flow.). V is then

known as the infinitesimal generator of θ.

Definition 7.6. A vector field is complete if it admits a global flow.

With a vector field V and a local flow θ one can now define something known as the Lie

derivative.

Definition 7.7. Given a smooth map between two manifolds X and Y , F : X → Y , the

derivative of F at p is the map DpF : TpX → TF (p)Y given by [γ] → [F ◦ γ], where γ
is the integral curve for some vector field v, with the bracket indicating the tangent vector

represented by curve γ. We denote Dp by F∗ the pushforward by F on tangent vectors.

Similarly, we define the dual map (DpF )
∨ : TF (p)T → TpX to be the pullback F ∗.

31This definition is not standard, and is credited to Dr. Jack Smith from whom I learnt most of these my

differential geometry.
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Definition 7.8. The Lie derivative of a vector field W , denoted LVW , is

d

dt

∣∣∣∣
t=0

(θt)∗W (7.8)

Here ·∗ indicates the pullback map.

The Lie derivative is defined as above as we want to pullback the vector transported to

compare with the original vector at the origin (and not the other way - otherwise there

will be a minus sign). We then note that we can define the Lie bracket of vector fields as

follows.

Definition 7.9. The Lie bracket of vector fields V and W is defined as

[V,W ] = LVW = −LWV . (7.9)

You can check that this makes the space of vector fields on M , X(M) into a Lie algebra

as this definition of Lie bracket is now alternating and satisfies the Jacobi identity. This

is surprising - the set of vector fields X(M) forms a Lie algebra under the Lie bracket of

vector fields. Why do we care so much about Lie groups then, if this structure is already

prevalent in a typical smooth manifold X?

The reason why is because Lie groups have a lot more structure to a general smooth mani-

fold. The notion of left-invariant vector fields are specifically defined only when you have a

group action G on the manifold, and since this group action already exists for Lie groups,

the notion of left-invariant vector fields naturally exist and hence one can naturally define

a Lie algebra on the set of vector fields. For a generic smooth manifold, there may not

exists such smooth right action that maps any point to another by a global diffeomor-

phism 32. Of course, one can also take the viewpoint that the group of all diffeomorphisms

of a smooth manifold M as an infinite-dimensional Fréchet Lie group - in that sense its Lie

algbera is exactly X(M) with its Lie bracket structure [25]. How do we connect all these

notions with the ‘local’-sense of how a Lie algebra is defined - as the Lie bracket structure

of tangent vector fields at the identity? This point is explored in the lectures but it is

worth emphasising once more — the left-invariant property of the vector fields means that

once the vector field is determined we will known its value at each point p ∈M . We then

have the vector space isomorphism,

L(G)→ TeG, ξ 7→ ξe , (7.10)

so the tangent vector at identity is uniquely defined 33. This global to local property is

unique to the Lie group structure. All that means is it is sufficient to understand the local

tangent space (germ) of G to understand the properties of the manifold (bar some global

properties as we will see soon).

32This point is explored in more detail in §20 of [7] where Lee talks about the homomorphism of g → X(M)

if such a smooth action G on M exists.
33The inverse of this map of course is ξe 7→ g∗ξe = ξg.
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Now the remaining question to address is why the tangent map e of a group homomorphism

is a Lie algebra homomorphism. This is again sketched out in the lecture note but it is worth

emphasising again. There is a natural map Ψ : G→ Aut(G) 34, where Ψg(h) = g · h · g−1.

A homomorphism ρ respects the adjoint action of a group G on its tangent space TeG at

the identity and therefore by taking the differential of the characterisation (dρ)e respects

the adjoint action of the tangent space to G on itself. Of course, with the arguments above,

we now see how this map relates to the Lie bracket definitions of left-invariant fields and

hence everything is now consistent.

7.2 The exponential map and BCH Formula

We have see in the previous subsection that the correspondence is a local construction.

The Lie group structure naturally endows a Lie bracket on the space of tangent vectors at

identity (or the space of left-invariant vector fields by the arguments above) so it naturally

has a Lie algebra structure. The local construction we discussed follows two important

principles (see §8 of [1]):

1. Let G and G′ be Lie groups, with G connected. A map f : G → G′ is uniquely

determined by its differential dfe : TeG→ TeG
′ at the identity.

2. Let G and G′ be Lie groups, with G connected and simply-connected. A linear map

TeG → TeG
′ is the differential of a homomorphism f : G → G′ if and only if it

preserves the bracket operation:

dfe ([X,Y ]) = [dfe(X), dfe(Y )] (7.11)

Alternatively, a linear map between the Lie algebras α : g → g′ is the differential of

a map f : G→ G′ of Lie groups if and only if α is a map of Lie algebras.

The natural question to ask now is how to perform the inverse, i.e. could we possibly

reconstruct a Lie group given a Lie algebra? The answer is yes, and it is often done with

the help of one-parameter subgroups and exponential maps which you have all encountered

in the lecture notes. These are also discussed in §3.4 of the notes and also §8.3 of [1]. We

note here that the exponential map is the unique map from g to G taking 0 to e whose

differential at the origin (exp∗)0 : T0g → TeG is the identity and the restrictions to the

lines through the origin in g are one-parameter subgroups of G. So in this so-called local

construction we have shown the following — since the differential of the exponential map

at the origin of g is an isomorphism, the image of exp will contain a neighbourhood of the

identity in G.

Before we continue let us see this more explicitly by constructing the actual correspondence

in detail for matrix Lie groups. Using the standard power series for ex:

exp(X) = 1 +X +
1

2
X2 +

1

3!
X3 + ... . (7.12)

34Here we look at the automorphisms of G by conjugation as there are no fixed points for multiplication

mg.
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We want to show that the group structure of G is encoded in the Lie algebra. Explicitly

we want to show that for X,Y ∈ g in a sufficiently small neighbourhood near the origin

we can write down the product exp(X) · exp(Y ) as an exponential. By defining,

log(g) = (g − I)− 1

2
(g − I)2 + 1

3
(g − I)3 + ... ∈ glnR , (7.13)

where g ∈ G, we want to set a new bilinear operation ∗ on glnR where

X ∗ Y = log (exp(X) · exp(Y )) . (7.14)

The formula of X ∗ Y in terms of X, Y and brackets is known as the Baker-Campbell-

Hausdorff formula and gives the local identification of Lie algebras and Lie groups. To

degree three it is

X ∗ Y = X + Y +
1

2
[X,Y ]± 1

12
[X, [X,Y ]]± 1

12
[Y, [Y,X]] + ... (7.15)

If G is connected the exponential map generates all of G (provided G is simply-connected,

as we will see soon in the next subsection) so every finite-dimensional Lie algebra is the

Lie algebra of a Lie group, by applying to an embedding of a Lie algebra g into gln.

7.3 Injectivity and surjectivity of an exponential map

Let me emphasise that the exponential map is a local construction — it tells you that there

is a diffeomorphism between the open neighbourhoods of 0 ∈ g and e ∈ G. In general, this

map exp : g→ G fails to be injective or surjective, as you would expect.

Let us investigate this a bit deeper. Firstly, let us look at injectivity. It is immediately

clear that if there exists any circle subgroups in the Lie group, say S1 which has R as its

Lie algebra. The generator in R, say some t, must eventually loop back on itself in the

image which causes the kernel of the exponential map to be some ker exp = Z. Another

simple counter-example to exp being injective is the group SO(2), which Lie algebra given

by the space of two-dimensional skew-symmetric matrices. In this case the exponential

map is given by:

exp :

(
0 t

−t 0

)
7→

(
cos t sin t

− sin t cos t

)
(7.16)

which clearly is not injective as we can identify t ∼ t+2π. In general, we have the following

characterisation.

Proposition 7.1. The following statements are equivalent.

(1) exp is injective.

(2) exp is surjective.

(3) exp is a real analytic diffeomorphism.

(4) G is solvable, simply connected, and g does not admit e as a subalgebra of a quotient.
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(5) G is solvable, simply connected, and g does not admit e or ẽ as a subalgebra.

(6) G has no closed subgroup isomorphic to either the circle R/Z, the universal covering

S̃L2(R), E the isometry group of the plane and its central extension Ẽ.

Here e is the 3d algebra, isomorphic to the group of isometries of the plane, with basis

(H,X, Y ) and brackets [H,X] = Y , [H,Y ] = −X, [X,Y ] = 0. The central extension of e

is ẽ which adds the central generator Z with the non-trivial bracket [X,Y ] = Z. Obviously,

E and Ẽ are the simply-connected solvable Lie groups associated to e and ẽ respectively.

Proof. As we have seen from above, the injectivity of the exponential implies that there

is no closed subgroup isomorphic to S1 so the maximal compact subgroup in G is trivial

and G is contractible 35. Now, by Levi’s decomposition, we can write a contractible Lie

group in the form R⋊ S̃L2(R)
k
with R a simply-connected solvable Lie group (as we must

have simply-connected covers), but for an injective exponential map we must have k = 0,

so G = R, a connected, simply-connected, contractible, solvable Lie group. This is not

enough — any Lie algebra that has e as subalgebra also includes rotations, which implies

that exp(tH) = e, for H ∈ e the rotation operator. The proof for (1)-(4) being equivalent

can be found in [26].

The equivalence between (4) and (5) is non-trivial and I leave the proof in [27]. It is clear

that the simple connected Lie groups E and Ẽ associated to e and ẽ have a non-injective

exponential map, so (1) implies (5) as well. Finally, the last statement comes naturally

from all the statements above.

In particular, what we have observed is this — if a Lie group G contains a subgroup iso-

morphic to the circle (hence tori) then the exponential map is automatically non-injective.

In analysing compact Lie groups, it is often useful to define a torus as follows.

Definition 7.10. A Lie group T is a torus if T is a compact, connected abelian Lie group

T isomorphic to the direct product of k ∈ N copies of the group S1 ∼= U(1).

The Lie algebra of the torus t is an abelian Lie algebra. In particular, we can observe that

the exponential map exp : t→ T is locally a diffeomorphism, and has a kernel,

ker(exp) = Λ , (7.17)

where Λ is the discrete subgroup to be modded out, identified as T = Rk/Λ. Why is this

a useful fact for analysing compact Lie groups? Turns out we have the following fact.

Proposition 7.2. Let G be a non-trivial, compact, connected Lie group. Then G contains

a positive dimensional torus.

Proof. G is positive dimensional and has a non-zero Lie algebra g. If X ∈ t, then exp(tX)

is a non-trivial one-parameter subgroup A ⊂ G, which is connected, positive dimensional

and abelian. So its closure is a Lie subgroup and a positive dimensional torus.

35A Lie group G is contractible if the identity map on G is null-homotopic.
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Corollary 7.1. There is a positive dimensional torus in G that is not properly contained

in any other torus in G. This is known as the maximal torus in G.

Proof. If T is a torus of maximal dimensional in G, then T is not properly contained in

any other torus in G. This is since T ⊂ T ′ for some T ′, then |t′| > |t| so dimT ′ > dimT

and we arrive at a contradiction.

The maximal torus is massively helpful in analysing the Weyl group, a subgroup of the

isometry group generated by reflections through the hyperplanes orthogonal to at least one

of the roots.

Why is this fact helpful? The logic goes as follows — for every Lie group which is compact

and connected, there is a maximal torus which we know has a non-trivial kernel under

the exponential map. This means that in these cases all the exponential maps are then

not injective by definition. Of course, some exponential maps can be injective — a quick

example is exp : Rn → Rn.

Now let us move on to surjectivity. Surjectivity of Lie groups obviously fail for disconnected

groups since the Lie algebra is necessarily connected so the map under the exponential

map must also be connected. A simple counter-example in this case is the Lorentz group

SO(1, 3) which we know from the lectures have four disconnected components.

However, even for connected Lie groups, surjectivity can also fail. An example is given by

Terrance Tao (in his blogpost), where he points out the following observation. Suppose

the exponential map is surjective, then every group element g ∈ G has a square root as

exp(X/2) obviously exists for any X ∈ g. However, there exist elements in connected Lie

groups without square roots, a simple example given by,

g =

(
−4 0

0 −1/4

)
, (7.18)

in the connected Lie group SL2(R), which square root do not exist as it must have an

eigenvalue ±2i and the other being ±i/2 but since h =
√
g ∈ SL2(R), the complex eigen-

values must come in conjugate pairs, giving a contradiction.

The characterisation is given by the following proposition.

Proposition 7.3. If G is a compact connected Lie group, then the exponential map is

surjective.

Proof. The central idea of the proof is to relate the exponential map in Lie theory to the one

in Riemannian geometry. Firstly, every compact G can be given a Riemannian metric via

a bi-invariant metric by averaging an arbitrary definite inner product on g by the adjoint

action of G using the Haar measure; which can then by translated by left translation to get

a bi-invariant Riemannian structure on G. (Alternatively, one can also use the Peter-Weyl

Theorem to embed G ⊂ U(N) and then induce a metric on Matn(C).) Now we apply the

Hopf-Rinow Theorem 36 and conclude that any two points are connected by at least one

36The theorem of Hopf-rinow states the following.
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geodesic, so the Riemannian exponential map g → G formed by following geodesics from

the origin is surjective. This requires noting that the group structure naturally defines a

connection on the tangent bundle which is torsion-free and preserves the bi-invariant metric

and therefore must agree with the Levi-Civita metric.

7.4 Functorial properties of exponential map

Having discussed the subtleties of the exponential map, we still have the following question

— does every Lie algebra have a natural correspondence, under the exponential map, to

a Lie group? In particular, the first principle that we have stated above, namely a map

f : G → G′ is uniquely determined by its differential dfe : TeG → TeG
′ at the identity,

states that the following diagram commutes,

G G′

TeG TeG
′

f

dfe

expG expG′

The exponential map expG is a diffeomorphism between open neighbourhoods of 0 ∈ g

and e ∈ G. Therefore the homomorphism f determined on the open subgroup H ⊂ G

is generated by some open subset U ∋ e in G, but since open subgroups are closed in

any topological group (non-trivial cosets are open) so H is closed in G and H = G by

connectedness of G. This means given a Lie group homomorphism, we could always find a

corresponding Lie algebra homomorphism which satisfies the commutative square.

This is not true in reverse. Given a Lie algebra map we may not be able to find a corre-

sponding Lie group map under the exponential map. So what is the correspondence? To

do this let us diverge and discuss centres and covers, following our discussion on covering

spaces in §6.1.

Definition 7.11. The centre Z(G) of a group G is defined as

Z(G) = {z ∈ G | ∀g ∈ G, zg = gz} (7.19)

Proposition 7.4. Let G be a Lie group, H be a connected manifold and ϕ : H → G a

covering space map. Let e′ be an element lying over the identity e of G. Then there is a

unique Lie group structure on H such that e′ is the identity and ϕ is a map of Lie groups.

The kernel of ϕ is the centre of H.

Theorem 7.1. Let M be a connected Riemannian manifold. The following are equivalent.

(1) M is complete as a metric space.

(2) M is geodesically complete.

(3) There exists a point p ∈ M such that Dp = TpM , D is the space of vector fields (space of sections on

TM).

(4) A subset of M is compact iff it is closed and bounded.
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Proof. The multiplication onG lifts uniquely to a mapH×H → H which takes (e′, e′) 7→ e′.

This product satisifes the group axioms (check). From Proposition 7.5 we can in fact do

this for the universal cover H of G and then use the proposition to obtain the appropriate

cover H.

Proposition 7.5. Let H be a Lie group and Γ ⊂ Z(H) a discrete subgroup of its centre.

Then there is a unique Lie group structure on the quotient group G = H/Γ such that the

quotient map q : H → G is a Lie group map.

Proof. This is straightforward from the axioms.

This motivates the following definition.

Definition 7.12. A Lie group map between two Lie groups G and H is an isogeny if it

is a covering space map of the underlying manifolds.Then we say G and H are isogenous.

Isogeny generates an equivalence notion - by identifying Lie groups with their universal

covers. This means that starting from a Lie group G, one can generate the universal

covering space G̃ and then if the centre of the universal cover is discrete (as for all semisimple

groups) (̃G)/Z((̃G)) can be generated. This identifies

G ≃ G̃ ≃ G̃/Z(G̃) (7.20)

as an equivalence class in the set (category) of Lie groups.

Definition 7.13. Using the notation above, we call G̃ the simply connected form of

the group G and G̃/Z(G̃), if it exists, the adjoint form of the group G.

We can now state the following theorem.

Theorem 7.2. Let g (over k = R,C) be a semisimple Lie algebra of finite dimension.

Then there is a connected, simply connected Lie group G such that g is the Lie algebra of

G.

Proof. This is Lie’s Third Theorem and its modern version was first proved by Cartan. A

discussion can be found in [28]. The actual proof is extremely complicated - the theorem

can be proved by Ado’s Theorem (as a Corollary, see Tao’s webpage [29]) or topological

[30] and cohomological proofs [31]. Also see [32–34].

In fact, one can look at this from a functorial approach [32]. This consists of describing

the assignment of the category of Lie groups G to the category of Lie algebras g via the

contravariant functor Lie:

Lie : G 7→ g . (7.21)

The functorial properties of the exponential map is only true over the set of connected,

simply-connected Lie groups such that L(G) = g. In the case of su(2) and so(3), although

they are isomorphic at the algebra level, su(2) ∼= so(3), under the exponential functor both

will only be isomorphic if we take the universal cover over the two groups, SU(2) and
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S̃O(3) ∼= SU(2) which is trivially the same. If the map between Lie groups f : G → G′ is

a discrete cover map, the descent to Lie algebra will then be an isomorphism.

I will end this section with a small example explicitly constructing the two-to-one map

between SU(2) and SO(3).

Example 7.1 (SU(2) and SO(3) revisited). To illustrate the point above let us revisit

the SU(2) and SO(3) homomorphism, φ : SO(3) → SU(2)/Z2. Suppose A ∈ SU(2) and

R ∈ SO(3), where

A =
1

2
tr(A)1 +

1

2
tr(σA) · σ . (7.22)

where σ = (σ1, σ2, σ3) are the Pauli matrices. Then for a 2d complex vector x we then

have,

det (x · σ) = −x2 . (7.23)

Define a linear transformation x→ x′ as

x′ · σ = Ax · σA† , (7.24)

where x2′ = x2. We can now use component-wise the SO(3) transformation,

x′i = Rijxj , (7.25)

to get (using also tr(σiσj) = 2δij),

σiRij = AσjA
† , (7.26)

i.e.

Rij =
1

2
tr
(
σiAσjA

†
)
. (7.27)

The converse can be constructed from σjA
†σj = 2 tr

(
A†)1−A† to get

Rjj = | tr(A)|2 − 1, σiRijσj = 2 tr
(
A†
)
A− 1 , (7.28)

which gives

A = ± 1 + σiRijσj

2 (1 +Rjj)
1
2

. (7.29)

The sign ± then signifies the correspondence ±A↔ Rij which gives the map φ.

Distributed version

Exercise 7.1. Try repeating the same procedure of Example 7.1 for the map

φ̃ : SO(3, 1)
∼=−→ SL(2,C)/Z2 . (7.30)
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8 Tensor Methods and Young Diagrams

I know a lot of you are extremely confused about Young diagrams and tensor methods.

Here I am going to provide a pedagogical account of tensor methods, focussing on how you

can utilise Young diagrams to produce irreducible tensorial representations of compact Lie

groups. We will only focus on SU(n)-tensors in this short account 37, and you can look

up on [1] for the other classical Lie groups. For completeness I will reproduce some results

presented in the last class, but for efficient presentation of the material I will ignore most

proofs (but I will try and point you to resources where you can look it up - they are not

pretty in general!).

8.1 Tensor Irreps in GL(n) and SU(n)

First let us define tensors and tensor representations.

Definition 8.1. An r-tensor representation of a group G is a map T : G→ GL(V ⊗r)

such that T is a representation of G. A rank r G-tensor 38 is defined to be an element

of the product space V ⊗r. For any given basis {v1, ...vn}, we can expand a tensor in the

form:

T = Ti1i2...irvi1 ⊗ ...⊗ vir (8.1)

Ti1i2...ir are then called the components of the tensor T with respect to the basis {vi}.

Similarly, one can define a (p, q) tensor with dual vector spaces.

Definition 8.2. Take V ∗ to be the dual space of V (the set of linear maps φ : V → F
where F is a field). An (p, q)-tensor representation of a group G is a map T : G →
GL(V ⊗p ⊗ V ∗⊗q) such that T is a representation of G. A rank (p, q) G-tensor is defined

to be an element of the product space V ⊗p⊗V ∗⊗q. For any given basis {v1, ...vp} and dual

basis {w1, ..., wq}, we can expand a tensor in the form:

T = T
j1...jq
i1...ip

vi1 ⊗ ...⊗ vip ⊗ wj1 ⊗ ...⊗ wjq (8.2)

In particular, we want to look at how tensor transforms under a group G. The most general

case is the general linear group GL(n). For this, we see that a (p, q)-tensor in GL(n) will

transform as

T
j1...jq
i1...ip

7→ A k1
i1

...A
kp

ip
Bj1

l1
...B

jq
lq
T
l1...lq
k1...kp

(8.3)

Here the matrices B are related to A ∈ GL(n), the fundamental transformation, as

BT = A−1 (8.4)

37We will in fact start with a discussion of GLn tensors, but we will see later the invariant tensors of GLn

is exactly the same as SU(n).
38We note that the tensors are not immediate representations of the groups themselves. They are in fact

the objects that the representations transform on and forms space called the tensor space. The tensor space

however is defined with respect to the group G; given a different group G the law of transformations on the

space will be different and hence the space of tensors will be different.

– 62 –



Our central goal is to find irreducible representations of GL(n). From the above definitions,

we can see that the tensors are in fact the objects that the matrices transform on. They

therefore gives a representation of the invariant subspace that the irreducible representa-

tions of GL(n) (or in fact a matrix subgroup G ⊂ GL(n)) act on.

Let us look at second-rank tensors to illustrate this point. Recall that the direct product

of two vector spaces is a reducible space:

V ⊗ V = Sym2 V ⊕
∧2V (8.5)

where Sym2 V and
∧

2V denotes the symmetric and antisymmetric part of the space. Sup-

pose Tij is a second-rank tensor and p is a permutation operator that switches the two

indices of the second-rank tensor. Since Tij ∈ V ⊗ V , we can write the decomposition of

Eq. (8.5) as

Tij = T(ij) + T[ij] = (id+p)Tij (8.6)

where id is just the identity map. The GL(n)-transformation acts on the tensor in the

following manner,

Tij 7→ A k
i A

l
j Tkl , (8.7)

and we note in particular that the operator p commutes with this GL(n)-action. The

reason for this is the product of matrices A k
i A

l
j is bisymmetric, the product indeed

remains unchanged when the same permutation is applied to both GL(n) actions:

p · Tij = Tji

= A k
j A

l
i Tkl

= A k
i A

l
j (p · T )kl (8.8)

A similar calculation will show that the permutation operator p of any two indices in-

deed commute with the GL(n)-action acting on the tensors since tensor transformation is

bisymmetric. We conclude that the whole space of rank-r tensors is reducible into sub-

spaces consisting of tensors of different symmetry properties. The rank-r tensors of a given

symmetry forms the basis of an irreducible representation of GL(n) - this corresponds to

the irreducible sub-block of the matrix product A k
i ... in the GL(n) transformations of

tensors.

Definition 8.3. The rank-r tensors of a particular symmetry type forms a basis of irreps

of GL(n); they are known as irreducible tensors with respect to GL(n).

We will henceforth discuss the irreps of a subgroup G of GL(n) by its representation as

the invariant space in the tensor space, i.e. we will associate the irrep of G with the tensor

itself.

The question is, how do we specialise this to the SU(n) group? To do this we need to

work out how irreducible representations of GL(n) can remain irreducible when we restrict

to subgroups of GL(n). Firstly, the elements of the matrices of a GL(n) irrep in terms

of the rank-r tensors are homogeneous polynomials of degree r in the elements Aij of
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the transformation matrices 39. Suppose the matrices are reducible when restricted to

the subgroup G ⊂ GL(n). Since under a change of basis the matrix elements remain

homogeneous polynomials of degree r in Aij , say p(Aij), then the restricted representation

will be reducible for the subgroup G ⊂ GL(n) if there exists a certain set of homogeneous

polynomials of degree r, pα(Aij) which vanish for all A ∈ G but not for all B ∈ GL(n).

Now we can try and see what happens when we restrict to SU(n). First note the restriction

to the unimodular group SL(n). Any matrix A ∈ GL(n) can be written as A = αB where

α = (detA)1/n, the polynomials pα(Aij) are simply rescaled by a factor αr for rank-

r tensors so the vanishing of polynomials pα(Bij) will require the original polynomials

pα(Aij) to vanish. Hence we have shown the following proposition.

Proposition 8.1. The irreducible tensors and irreps of GL(n) and SL(n) are the same.

Proof. See the vanishing of polynomial argument in the paragraph above.

For SU(n), recall that the elements of the Lie algebra of SU(n), denoted by sun, are simply

the real form of the Lie algebra glnC 40. Using the vanishing polynomial argument we can

again conclude the following proposition.

Proposition 8.2. The irreducible tensors and irreps of GL(n) and SU(n) are the same.

Proof. Consider the Lie algebra of GL(n), gln, and suppose Xij be a basis of the gln Lie

algebra, so any element of gln can be written as
∑

ij αijXij where αij ∈ C. For the Lie

algebra of SU(n), we will need αij ∈ R. Now suppose a representation of the Lie algebra

basis element Xij is given by the matrices xij . Then if a representation is reducible for

sun, we will need to find a basis in which the matrices αijxij are in reduced form for all

αij ∈ R. Using linearity the linear forms αijxij must also vanish for any αij ∈ C so the

representation is also reducible for gln. The converse is the same, and we can then use the

exponential map to lift the argument to the Lie groups equivalents.

The above proposition therefore implies that we can analyse SU(n)-tensors the same way

we analyse GL(n) tensors - they have the same irreducible structures. We will from now

on use the two terms interchangeably.

In SU(n), we distinguish between lower and upper indices using the dual basis as de-

scribed above for GL(n) tensors. The two kinds of indices transform in under different

representations in SU(n), as illustrated explicitly in the following definition.

Definition 8.4. A (p, q) tensor in np ⊗ n̄q of SU(n) carries p lower and q upper indices

ϕ
ν1...νq
µ1...µp . It transforms in SU(n) as:

ϕ
ν1...νq
µ1...µp 7→ U ρ1

µ1
...U

ρp
µp U

ν1
σ1
...U

νq
σq
ϕ
σ1...σq
ρ1...ρp (8.9)

39To see this, take the list of the tensor components as a vector and work out the transformation matrix

for a few simple cases.
40For a detailed discussion of complexifications of Lie algebras, see §9.
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where U ∈ SU(n) and U is the complex conjugate of U . An invariant tensor is a tensor

that is invariant under an SU(n) transformation. The dual tensor of a (p, q) tensor is a

(q, p) tensor.

In SU(n), there are only three invariant tensors.

Proposition 8.3. The invariant tensors of SU(n) are the Kronecker delta δµν and the

Levi-Civita tensors ϵµ1...µn and ϵν1...νn.

Proof. Explicit calculation.

What do we want to do with tensors? From the argument above, we saw that tensors

are extremely useful in representation theory of Lie groups and Lie algebras as they can

represent irreducible representations. We have two items on our wish-list:

1. Constructing new irreps from old ones.

2. Finding branching rules.

We will find that tensors and Young diagrams play a central role in achieving these goals.

As mentioned above, we will mainly focus on SU(n)-tensors. There are some additional

subtleties that must be dealt with when we talk about SO(n) and Sp(n) tensors - we will

only briefly chat about this but this will not be the main focus on this section.

8.2 Building irreps using invariant tensors

Let us tackle our first goal of building irreducible representations. This is done by using the

invariant tensors listed above for SU(n) - namely the Levi-Civita tensors and the Kronecker

Delta. The main procedure is as follows:

Proposition 8.4 (Building irreps using invariant tensors). To build irreducible represen-

tations using invariant tensors, one follows the following procedure:

1. Start with a particular (p, q) tensor. For tensor products, just multiply the two tensors

together.

2. Now build all possible contractions with the invariant tensors.

3. Subtract these contractions from the overall tensor and repeat step 2 until the leftover

tensor is also invariant.

To see this in action let us look at an example:

Example 8.1. Let us try and decompose ϕij in SU(n). The only invariant tensors we can

use at this order is ϵab, so we apply this to project this component out:

ϕ[ij] =
1

2
ϵabϕabϵij (8.10)

Subtracting this from the tensor gives the full decomposition for rank-2 tensors:

Tij = T(ij) + T[ij] (8.11)

The above example in fact works for the tensor product ϕi ⊗ ψj , which we can just write

as the rank-2 tensor Tij = ϕiψj .
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From the example above, it is therefore, in principle, possible to carry out Clebsch-Gordon

decomposition by simply using invariant tensors and contracting indices whenever possible.

This is in general extremely annoying and algebraically-challenging. Therefore, we will

instead exploit a property of the GL(n) irreps that allows us to ultilise Young diagrams to

perform such computations.

Remark 8.1. SO(n) and Sp(n) tensors are a bit more annoying. For example, in the

example above for the full decomposition of SO(n) one must also project out the trace part

to get the full decomposition of the tensor.

8.3 Irreducible Representations of Sn and Young Diagrams

A brief interlude. I want to come back to our finite group discussion, and briefly return to

symmetric groups Sn. For completeness, I am going to recall some facts from §2 and §5
related to symmetric groups Sn. First let us recall some facts about irreducible represen-

tations of Sn.

Proposition 8.5. The number of irreducible representations of Sn is the number of con-

jugacy classes, which is the number p(n) of partitions of n. The partitions of n is

p(n) = λ1 + ...+ λk , λ1 ≥ ... ≥ λk ≥ 1 . (8.12)

Proof. The number of irreps is clearly equal to the number of conjugacy classes 41. It

remains to show that the number of conjugacy classes is equal to the number of partitions

of n. This is however a corollary of Theorem 2.3.

To each partition of n we can associate a Young diagram, as defined in §5.

Definition 8.5. A Young diagram is a collection of boxes, or cells, arranged in left-

justified rows, with a weakly decreasing number of boxes in each row. Listing the number

of boxes in each row gives a partition p(n) of integer n, where it is also the total number

of boxes. Conversely, as stated above, each partition correspond to a Young diagram.

A Young diagram is sometimes called a Young frame or Ferrers diagram. To each diagram,

we can number the boxes consecutively to generate Young tableau.

Definition 8.6. A Young tableau is a filling of a Young diagram such that the numbers

are weakly increasing across each row but strictly increasing down each column. A stan-

dard tableau is a tableau in which entries are numbers from 1 to n, n being the total

number of boxes.

Example 8.2. As an example let us look at the partitions of n = 3. Then we have the

following partitions, Young diagrams and Standard Young Tableaux as illustrated in Table

8.1.

41If you for once doubt this statement, look at Theorem 2.8 of Andre’s notes.
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Partition Young Diagram Standard Young Tableaux

(3) 1 2 3

(2, 1)
1 2
3

1 3
2

(1, 1, 1)
1
2
3

Table 8.1: The Young diagrams and all possible Standard Young Tableaux for dimension-

3.

Recall that Young tableaux can be used to describe projection operators for the regular

representation which will then give the irreducible representations of Sn, which we have

already seen in §5. Given a standard Young tableau, we can define two subgroups of the

symmetry group,

P = Pλ = {g ∈ Sn | g preserves each row} , (8.13)

Q = Qλ = {g ∈ Sn | g preserves each column} . (8.14)

Then in the group algebra CSn we can introduce two elements corresponding to these two

subgroups. In particular, we define

aλ =
∑
g∈P

eg, bλ =
∑
g∈Q

sgn(g)eg . (8.15)

The actions of aλ, bλ ∈ CSn → End(V ⊗n) are the following subspaces.

Im(aλ) = Symλ1 V ⊗ ...⊗ Symλk V ⊂ V ⊗n , (8.16)

Im(bλ) =
∧µ1V ⊗ ...⊗

∧µlV ⊂ V ⊗n , (8.17)

where µ is the conjugate partition to λ obtained by flipping the diagram along the 45◦ line.

We can now define the following object.

Definition 8.7 (Young Projectors). The Young symmetriser is defined as

cλ = aλ · bλ ∈ CSn . (8.18)

Take A = CSn as the group ring of Sn. If cλ is a Young symmetriser, then the correespond-

ing representation is Vλ = Acλ. We have the following proposition.

Proposition 8.6. An element of Sn can be written in at most one way as a product p · q
where p ∈ P and q ∈ Q.

Proof. P ∩Q = {1}. So no commutations are possible.
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This means that the form of cλ can be written as

cλ =
∑
g=p·q

±eg , (8.19)

with the coefficient ±1 being the sign of q. Now we have the following lemma.

Lemma 8.1. We have the following three statements.

(1) For p ∈ P , p · a = a · p = a.

(2) For q ∈ Q, (sgn(q)q) · b = b · (sgn(q)q) = b.

(3) For all p ∈ P , q ∈ Q, p · c · (sgn(q)q) = c and up to multiplication by a scalar, c is

the only such element in A.

Proof. The first two statements are obvious. So look at the third statement. Let us

suppose
∑

g ngeg satisfies the condition in (3). Then npgq = sgn(q)ng for all g, p, q and

npq = sgn(q)n1 where n1 is the coefficient for the fully anti-symmetrised irrep. It is enough

to show ng = 0 when g ̸∈ PQ. For such g it suffices to find a transposition t such that

p = t ∈ P and q = g−1tg ∈ Q so then g = pgq and ng = −ng. Now suppose T ′ = gT is the

tableau obtained by replacing each entry i of T by g(i). The claim is that there are two

distinct integers that appear in the same row of T and in the same column of T ′ where the

transposition t acts on. Take pi ∈ P and q′1 ∈ Q′ = gQg−1 such that p1T and q′T ′ have

the same first row. Repeat this for the rest of the tableau to get p ∈ P and q′ ∈ Q′ such

that pT = q′T ′. Then pT = q′gT so p = q′g. Defining q = g−1(q′)−1g ∈ Q we get g = pq.

So if we don’t have such distinct pair of integers t then we can write g = pq.

Before we continue let me define what it means by partitions being lexicographically-

ordered.

Definition 8.8. The partitions are ordered lexicographically when λ > µ if the first

non-vanishing λi − µi is positive.

Finally we have the following lemma.

Theorem 8.1. The following two statements are true.

(1) If λ > µ then for all x ∈ A, aλ · x · bµ = 0. In particular, if λ > µ, then cλ = cµ = 0.

(2) For all x ∈ A, cλ · x · cλ is a scalar multiple of cλ. In particular, cλ · cλ = nλcλ for

some nλ ∈ C.

In particular, that statement implies some scalar multiple of cλ is idempotent, i.e.

c2λ = nλcλ , (8.20)

and the image of cλ is an irrep Vλ of Sn, where the multiplication on CSn acts on the right.

Every irrep of Sn can be obtained in this way for a unique partition.
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Proof. First prove (1). Take x = g ∈ Sn. Since g · bµ · g−1 is the element constructed from

gT ′, where T ′ is the tableau used to generate bµ, then it suffices to show that aλ · bµ = 0.

Note λ > µ implies that there are two integers in the same row of T and the same column

of T ′. If t is the transposition of these integers, then aλ · t = aλ, t · bµ = −bµ so we must

have aλ · bµ = aλ · t · t · bµ = −aλ · bµ, as required. Part (2) immediately follows from Lemma

8.1.

This theorem gives a direct correspondence between conjugacy classes in Sn and irreducible

representations of Sn - which is not true for general groups! We will eventually see that the

image of the symmetrisers cλ in V ⊗n provide essentially all the finite-dimensional irreps of

GL(V ).

So now we have two separate unrelated things. On the one hand, we have GL(n) tensors

which effectively furnish irreps of GL(n); on the other hand, we have irreducible representa-

tions of Sn which can be analysed using Young diagrams. Let us now make the connection

between the two kinds of objects.

8.4 Schur-Weyl Duality

Let us briefly return to the group GL(n). We have seen in the first section how we can

decompose a rank-2 GL(n)-tensor Tij into two irreducible parts - namely the symmetric

and anti-symmetric part.

Tij = T(ij) + T[ij] = (id+p)Tij . (8.6)

Here p = (12) in cycle notation, the permutation of the two indices. The operator p is

obviously an element of the symmetric group S2 so this begs the question - are the irreps

of GL(n) related to Sn?

It turns out the symmetric group Sd does act on V ⊗r on the right and the action, as

discussed above, commutes with the left action of GL(V ). It is therefore possible to relate

the irreducible representations of GL(n) with irreducible representations of the symmetric

group Sn. This turns out to be an extremely powerful statement - one can now use

the machinery from the representation theory of finite symmetric groups in analysing the

representation theory of GL(n) and its subgroups!

Let us briefly illustrate this principle by looking at Eq. (8.6) again. To obtain tensors of a

particular symmetry type, we apply Young symmetrisers to the indices of the general rank-

r tensor Ti1...ir . For example, there are two types of rank-2 tensors, namely the symmetric

type

T(ij) ←→ i j , (8.21)

and the antisymmetric type

T[ij] ←→ i
j
. (8.22)

We see that the two tensors are obtained by applying the Young symmetrisers c± = e± t
where t indicates the transposition between the two indices respectively. This is true for
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rank-r tensors in general, with one exceptional caveat. Given a Young symmetriser of a

particular partition λ of integer n, the Young symmetriser acts on the right on the product

of spaces V ⊗n to obtain an invariant subspace SλV
⊕rλ where rλ is the number of standard

Young tableaux obtainable from the Young diagram corresponding to the partition λ.

We now state the most important theorem in this section - the theorem allows us to relate

Young diagrams with irreducible tensors we have been discussing about. Define the image

of the Young symmetriser cλ on V ⊗n by SλV ,

SλV = im (cλ|V ⊗n) , (8.23)

which is a representation of GL(V ). Then we have the following theorem and corollary.

Theorem 8.2. The following statements about the action of cλ on V ⊗n are true.

(1) Let k = dimV . Then SλV is zero if λk+1 ̸= 0. If λ corresponds to the partition

λ = (λ1 ≥ ... ≥ λk ≥ 0), then

dimSλV =
∏

1≤i≤j≤k

λi − λj + j − i
j − i

. (8.24)

(2) Let mλ be the dimension of the irreducible representation Vλ of Sn corresponding to

λ. Then

V ⊗n ∼=
⊕
λ

SλV
⊗mλ . (8.25)

(3) Each SλV is an irreducible representation of GL(V ).

Proof. See §8.12 for the proof.

In particular we have the following corollary.

Corollary 8.1 (Schur-Weyl Duality). If c ∈ CSn and (CSn) · c =
⊕

λ V
⊕rλ
λ as representa-

tions of Sn, then there is a corresponding decomposition of GL(n)-spaces:

V ⊗n · c =
⊕
λ

SλV
⊕rλ (8.26)

For the details of the proofs and extended statements of the theorem and corollary I refer

to §8.12 and [1]. We proceed by assuming that this is a known result, and apply this to

analyse tensor representations. This is amazing. With the Schur-Weyl duality we can now

proceed and analyse tensor irreps! Recall that GL(n) irreducible tensors are the same as

SU(n) irreducible tensors. There is one extra caveat that we need to consider when we

apply the Schur-Weyl duality to SU(n) tensors however. Although we have shown that the

invariant tensors are the same, the irreducible tensors in SU(n) that descends from GL(n)

might not be independent.

Proposition 8.7. The partition λ and λ′ where λ = (λ1 ≥ ... ≥ λn ≥ 0) and λ′ =

(λ1 + s ≥ ... ≥ λn + s ≥ 0) of unimodular subgroups of GL(n), such as SL(n) and SU(n),

are equivalent.
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Proof. In particular, note that every column of length-n simply corresponds to the factor

(detA). Since detA = 1 for unimodular groups, the two partitions are equivalent.

In particular, we only need to consider patterns which have fewer than n rows. There is a

second equivalence to relate conjugate representations.

Proposition 8.8. The partition λ and λ′ where λ = (λ1 ≥ ... ≥ λn ≥ 0) and λ′ =

(λ1−λn ≥ ... ≥ λ1−λ2 ≥ 0) of unimodular subgroups of GL(n), such as SL(n) and SU(n),

are equivalent.

Proof. This can be seen from the existence of the Levi-Civita tensors, which relates the two

partitions by acting on each of the columns of indices to obtain the conjugate indices.

The second equivalence is what we call conjugation. In fact, we are going to use this

property extensively in our analysis of tensor irreps of SU(n). In practice, the conjugate

tensor irrep is obtained by looking for the Young diagram that completes the n×d rectangle,
where n is the one in SU(n) and d is the number of columns in the original partition. For

example, the following two partitions are equivalent in SU(4),

←→ . (8.27)

8.5 Tensors and Young Diagrams

Now that we have established the correspondence between tensor irreps and Young dia-

grams (and got the ugly maths out of the way), we can apply this technology to analyse

tensors in SU(n). The general rule to produce irreducible tensors is as follows:

1. Write out all partitions of r in Young diagram form for producing irreducible tensors

of rank-r.

2. Write out all standard Young tableaux allowed by the rules. Each of that corresponds

to an irreducible tensor.

We clearly see from the above example that Young diagrams correspond to the type of

irreducible tensor you are constructing (i.e. the irrep), whilst the number of standard

Young tableaux you can generate from that Young diagram would be the dimension of

that irrep (see Corollary 8.1). It is often not feasible to write down all standard Young

tableaux. Instead, there is a way to calculate the dimension of the tensor irrep as stated

by the following proposition.

Proposition 8.9. The dimension of an irrep in GL(n,C) corresponding to a Young dia-

gram can be calculated using the following algorithm.

1. First draw two copies of the Young diagram.
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2. For the first diagram, start with n at the upper-left corner and assign numbers - for

any box to the right add one, for any box below a box that already has a number in it

minus one from that of the box above.

3. Compute Hook lengths using the second Young diagram.

4. Multiply all numbers in each diagram and divide the product of the numbers in the

second diagram from that of the first - this is the dimension of the irrep.

Proof. Not too hard but skipped - this is a direct consequence of Theorem 8.2 and dealt

with in Exercise 6.4 of [1].

Example 8.3. Let us compute the dimension of

,

in SU(3). The two diagrams are
3 4
2

3 1
1

,

where the first diagram corresponds to the n assignment and the second diagram is the

Hook length diagram (Young tableaux with Hook lengths at each entry). Multiplying all

the numbers in each diagram and dividing the numbers from 1 to 2 gives the dimension

4!/3 = 8, as shown in the lecture notes (this is the adjoint representation of SU(3)).

In SU(n) there is a caveat - as discussed above you are allowed dual partitions (Proposition

8.8). In particular we have the following corollary on our rules on applying Young diagrams

to SU(n) tensors.

Proposition 8.10. The dual irreducible representation r̄ of r of SU(n) can be obtained

by drawing a “dual” diagram such that summing the number of boxes for each column for

the two diagrams gives n.

Proof. Direct consequence of Proposition 8.8.

Let us look at a few examples.

Example 8.4. In SU(4) the anti-fundamental representation 4̄ is

,

corresponding to the tensor ϕµ = ϵµνρσϕνρσ. The fundamental representation of course is

,

with corresponding tensor ϕµ. We can see that adding up the first column gives precisely

4 boxes.
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Example 8.5. Since we have the Clebsch-Gordon decomposition n ⊗ n̄ = 1 + adj, the

adjoint representation of SU(n) is always has the form - (n− 1) boxes in the first column

and 1 box in the second column, i.e. for example for adjoint of SU(6) this is

,

Remark 8.2. From Proposition 8.7 and the above argument you can see for SU(n) the

number of boxes per column cannot exceed n. If the number of boxes in a column is

precisely n, this means this is equivalent to the singlet representation. You can alternatively

see from the Young projector - you cannot anti-symmetrise (n+ 1) objects non-trivially if

you only have n unique objects.

Remark 8.3. When you are writing for an explicit form for the tensors, note carefully

how you compose anti-symmetrisation and symmetrisation. Sometimes is best to write

everything out, for example in SU(4), we have the correspondence42:

←→ ϕλµ = ϵλνρσ(ϕνρσµ + ϕνρµσ) . (8.28)

To do the tensor identification, it might be helpful to label the Young diagram using indices.

In the above case, we can label the diagram using,

σ µ
ν
ρ

, (8.29)

so we have symmetrised µ ↔ σ in the last equality in Eq. (8.28). The upper dual index

can be used to replace n − 1-indices, in this case we have swapped [νρσ] with an upper

index λ.

Distributed version:

Exercise 8.1. Try Q4 of the second sheet again and find the Young tableaux and

their associated tensors for the irreps 1, 5, 5̄, 15, 10 and 24 of SU(5).

This establishes the necessary ingredients in relating tensor irreps to Young diagrams.

8.6 Clebsch-Gordon decomposition from Young tablaeux

Having described the tensor irreps in terms of Young diagrams and tableaux, we can now

try to formulate tensor products and their Clebsch-Gordon decompositions in the same

language. Recall the Clebsch-Gordon decomposition is the following:

Sλ(V )⊗ Sµ(V ) =
⊕

NλµνSν(V ) , (8.30)

42Note that you can use ( ) and [ ] as symmetrising and antisymmetrising symbols, but be careful about

how you write them so they are not confusing. So for this example ϕ(ν[ρ)µσ] is allowed.
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the integers Nλµν describing how many times the irrep Sν(V ) appears in the tensor product.

Here we will illustrate a practical algorithm to realise this decomposition - as mentioned in

the notes, this is known as the Littlewood-Richardson Rule (or the Littlewood-Richardson

Theorem, see [1] for details). I am just going to state the algorithm here without proof.

Proposition 8.11. (Clebsch-Gordon decomposition from Young tableaux) To tensor An−1

representations for two Young tableaux λ and µ proceeds as follows:

1. Write the first Young tableaux λ 43 with as in the first row, bs in the second and so

on. For example:
a a a
b b
c

2. Now attach boxes of λ to µ one by one from the first row (labelled as) onwards. We

need to make sure that no two letters of the same type appear in the same column44

and the result is always a valid Young tableau.

3. For each of Young tableaux obtained in the previous step, read all letters from right

to left and top to bottom. (So you read from right to left along the first row, and then

in the same direction in the second row, and so on.) This sequence, say aaabbcabc,

must form a lattice permutation45, i.e. we count the total number of every letter

encountered at each box, and we require the number of as to be more than or equal to

the number of bs (and any subsequent letter), and so on. Otherwise we discard that

Young tableau.

4. The number of the same diagrams that are obtained from this method are integers

Nλµν , which encodes the multiplicity of the irrep in the tensor product.

Proof. We need the so-called Littlewood-Richardson Theorem. You can find this in [1].

This probably deserves an example:

Example 8.6. Let us look at the tensor product:

⊗ a a
b

. (8.31)

Here I am deliberately decomposing the larger Young diagram to illustrate the rule - in

practice you should always choose the smaller one. Now we do the second step:(
a ⊕

a

)
⊗ a

b
. (8.32)

43I would canonically choose the one with the smaller size as my first Young tableaux.
44This is to ensure that the indices that are originally symmetrised do not get anti-symmetrised, i.e.

cancellation due to antisymmetry.
45A lattice permutation is a string composed of positive integers in which every prefix (substring before

that integer) contains at least as many positive integers i as integers i + 1. In our case just map a ↔ 1,

b ↔ 2, etc.
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Apply the second a:  a a ⊕ a
a

⊕ a
a

⊕ a
a

⊗ b . (8.33)

Now eliminate the invalid diagrams and the degenerate 46 ones:(
a a ⊕ a

a

)
⊗ b . (8.34)

Add the third box:

a a b ⊕ a a
b

⊕ a b
a

⊕ a
a b

⊕
a

a
b

. (8.35)

Now according to the third rule, the first and third diagrams are invalid so we take them

away. We are therefore left with:

⊗ = ⊕ ⊕ . (8.36)

In SU(3), this means that we have the decomposition (following the rule for computing

dimensions):

3⊗ 8 = 15⊕ 6⊕ 3 , (8.37)

recalling that three boxes in a column is just the singlet (i.e. C).

8.7 Branching by index decomposition

Now we turn to branching - this is very important as we can generate subgroup represen-

tations from existing representations in the group. First recall what branching is.

Definition 8.9. Say H in a subgroup of a group G. A branching rule or branching is

the restricted representation decomposition of irrep R(G) the form:

R(G) → R(H) =
⊕

nsR
(H)
s , (8.38)

where now R
(H)
s are the irreps of H and ns indicates the multiplicity of the irrep R

(H)
s in

the branching.

Branching is well-defined in the context of Lie groups. In fact, one can show that the

Littlewood-Richardson Rule above allows you to give a restriction on a sub-representation

of an irrep. This requires the use of the so-called Pieri’s formula [1]. Here I will present

some practical way of doing branching using tensors.

The first method is index decomposition. The idea is simple - we rewrite our tensor indices

as the ones in the subgroup and deduce all possible combination of these new indices under

appropriate symmetrisation and anti-symmetrisation. The algorithm is as follows:

46Degenerate diagrams are the diagrams where the labels are written in the same way.
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1. First write the tensor with respect to the Young diagram. We use explicitly the

indices µ.

2. Replace the µ indices with indices specific to the subgroup, say a and i.

3. Compute all possible combinations and take away degenerate terms. Compute the

relevant dimensions (no index - singlet field).

Example 8.7. Let us do this for one SU(5) irrep and consider the canonical splitting

SU(5) → SU(3) × SU(2). We denote µ, ν as SU(5) indices and replace that with a, b, ...

and i, j, ..., the indices of SU(3) and SU(2). Now the branchings can be easily worked out

by specialising the SU(5) indices on a tensor to all possible combinations of SU(3) and

SU(2) indices. Recall for the fundamental representation ϕµ ∼ 5, so the branching

ϕµ 7→ (ϕa, ϕi) , (8.39)

or

5 7→ (3,1)⊕ (1,2) . (8.40)

Now let us look at the 15 representation. This splits into 47

ϕ(µν) 7→
(
ϕ(ab), ϕai, ϕ(ij)

)
, (8.41)

or

15 7→ (6,1)⊕ (3,2)⊕ (1,3) . (8.42)

8.8 Branching using Young tableaux

There is of course another way of doing branching. Having established the one-to-one

correspondence between tensor irreps and Young diagrams, one can actually try and split

up possible Young diagrams from an existing Young diagram to generate branching tensors.

The algorithm for branching for SU(n+m)→ SU(n)× SU(m) again is as follows.

1. Start with the Young diagram corresponding to the SU(n+m)-tensor irrep that you

want to branch off from.

2. Generate all possible splitting possible from the Young diagram. In particular, we

consider all pairs of diagrams, (Y1, Y2), where Y1 and Y2 denote the Young diagrams

of the irreducible representations in SU(n) and SU(m) respectively, and tensor them

up in SU(n+m) using the Clebsch-Gordon decomposition in §8.6 rule by treating the

boxes indexed from 1, . . . , n and n+1, . . . , n+m. The number of times (multiplicity)

that the pair (Y1, Y2) appears in the branching rule, ny1,y2, is given by the multiplicity

of the original irrep in the decomposition Y1 ⊗ Y2.

3. For simple cases, one can split the Young diagram corresponding to the original irrep

into sub-diagrams and count the number of dimensions on both sides such that they

match. If the dimensions do not add up, we additionally consider diagrams that we

have missed in the above step.

47Noting by antisymmetry that ϕai = −ϕia so the two tensors (ϕai, ϕia) get shoved into the same irrep.
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4. Finally label the splitting using dimensions.

Technically, what we are actually computing is the embedding SU(n)×SU(m) ⊂ SU(n+

m). The number of times the original representations appears is then the total number of

times that the representations Rn and Rm of SU(n) and SU(m) respectively will appear

in the branching [8]. It is much easier to see this in action so let us do that for the SU(5)

tensors again.

Example 8.8. Let us look at the branching of the fundamental rep of SU(5) into SU(3)×
SU(2), 5 7→ (3,1)⊕ (1,2). To do this we start with one box and try and split the diagram

(we cannot) so we have, with the two boxes indicating the irreps in SU(3) and SU(2)

respectively,

7→
(

, •
)
⊕
(
• ,

)
, (8.43)

with the first and second entries the SU(3) and SU(2) representations respectively so we

get precisely the splitting. Now look at 15. This splits into:

7→
(

, •
)
⊕
(

,
)
⊕
(
• ,

)
, (8.44)

which is precisely the required splitting

15 7→ (6,1)⊕ (3,2)⊕ (1,3) . (8.45)

Example 8.9. Let us do a more complicated example. Consider the braching rule of the

adjoint representation of SU(4), 15, under SU(4)→ SU(2)×SU(2). The splitting rule in

fact only gives four diagrams,

7→
(

,

)
⊕
(

,

)
⊕
(

,

)(
,

)
. (8.46)

Notice that in this case the dimensions on the right only add up to 14. In fact, the missing

diagram comes from the tensor rule,

⊗ ,

and we therefore have the branching rule,

7→
(

,

)
⊕
(

,

)
⊕
(

,

)(
,

)
⊕
(

,

)
. (8.47)

In tensor notation, this corresponds to the splitting, with α the SU(4) indices and a and i

the indices of the two SU(2) respectively,

ψ(α[δ)βγ] 7→ ψ(i[j)ab] ⊕ ψ(a[b)ij] ⊕ ψ(a[b)ci] ⊕ ψ(i[j)ka] ⊕ ψ(a[i)jb]

= (ϕ[ab] , ϕ̃(ij))⊕ (ϕ(ab) , ϕ̃[ij])⊕ (ϕ(a[b)c] , ϕ̃i)⊕ (ϕa , ϕ̃(i[j)k])⊕ (ϕ[ab] , ϕ̃[ij]) ,

(8.48)

after taking the symmetrisation and antisymmetrisation into account.
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8.9 Branching with U(1) factors

We want to now start considering branching that includes U(1) factors. We will begin with

a specific case where we are looking at a branching,

SU(n+ 1)→ SU(n)× U(1) . (8.49)

The extra U(1) is added in to make it into a maximal subgroup. To proceed, we consider the

subgroup SU(n)×U(1). Let us think about what happens in the tensor indices language.

Let us start with the fundamental representation n and considers what happens to the

tensor:

ϕa → ϕi ⊕ ϕ′ , (8.50)

Here we note that a is the SU(n + 1) index and i is the SU(n) index. The ϕ′ indicates

the tensor in U(1) - there are no indices associated to U(1) in this language! This means

that for every box in the Young diagram (noting that each box indicates an index), it will

either be assigned to the fundamental rep n of SU(n) or the trivial rep 1. Therefore, for a

Young diagram with n boxes, j will transform like n and n− j will transform like singlets

in SU(n− 1).

Now, to determine the U(1) charge, we need to work out the transformations of the funda-

mental representations n and the trivial rep in U(1). Let us clear consider a more general

problem of the following.

Proposition 8.12. Consider the Lie group SU(n + m) which branches into SU(n) ×
SU(m). Then there is a unique U(1) ⊂ SU(n+m) subgroup which commutes with SU(n)×
SU(m). The matrices that commutes with SU(n)× SU(m) are diagonal.

Proof. Suppose V is an SU(n+m) arbitrary matrix and U ∈ SU(n)×SU(m) ⊂ SU(n+m).

We can write these matrices in block form:

V =

(
A B

C D

)
, (8.51)

U =

(
Un 0

0 Um

)
. (8.52)

Now the commutation condition [V,U ] = 0 implies that ,
UnA = AUn

UnB = BUm

UmC = CUn

UmD = DUm

. (8.53)
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Now setting Um = 1m in the second and third equations give B = C = 0. By Schur’s

Lemma 48, the first and fourth equation gives

A = λn1n , (8.54)

D = λm1m , (8.55)

for λn, λm ∈ C. Now for

V =

(
λn1n 0

0 D = λm1m

)
to be an SU(n+m) matrix, we require |λn| = 1 = |λm| (from unitarity) and

λnnλ
m
m = 1 . (8.56)

This allows us to determine the form of the matrix, for example, with the solution:{
λn = e−imα

λm = einα
. (8.57)

To show this is the unique U(1) group (with freedom in choosing arbitrary charges), note

that if we start with a different solution in Equation 8.57 then we will get the same answer

up to a root of unity transformation.

The conclusion from the above proposition is that the for a branching SU(n + m) →
SU(n) × SU(m), the fundamental representation n+m breaks into n and m with the

U(1) charge m and −n respectively. In our present case SU(n + 1) → SU(n), we set

m = 1 and note that SU(1) does not exist - we can assign the normalised charge 1
n+1 to

the fundamental rep n and − n
n+1 to the trivial rep 1. Note here that if the group is SU(m)

where m = 1, then we only allow symmetric Young diagrams (i.e. horizontal diagrams).

Example 8.10. Let us look at an example where SU(3)→ SU(2)×U(1). The fundamental

rep breaks like

3→ 2⊕ 1 , (8.58)

For a Young diagram representing a tensor with n indices, we then have n boxes which

then branches with m boxes that transform like doublets and n−m boxes that transform

like singlets. The total U(1) charge is then

q =
m

3
− 2(n−m)

3
= −2n

3
+m . (8.59)

Let us look at a particular example. Consider adj of SU(3).

→
(

, •
)
⊕
(

,

)
⊕
(

,
)
⊕
(

,
)
. (8.60)

Then using Equation 8.59 to compute charges gives

8→ 21 ⊕ 10 ⊕ 30 ⊕ 2−1 . (8.61)
48In last year’s notes this is incorrectly referred to the proof in Q4 of the first problem sheet. The

generalised Schur’s Lemma doesn’t apply here - but the proof is of a similar spirit regardless.
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To generalise this to the case SU(n+m)→ SU(n)× SU(m) is simple. We follow the rule

in the previous subsection for the branching and then assign the U(1) charges according

to the rule set out in Proposition 8.12. Let us now consider some examples.

Example 8.11. Let us consider the splitting of SU(6) → SU(4) × SU(2). Using the

argument in Proposition 8.12 would give the following commuting matrix:

U = diag(eiα, eiα, eiα, eiα, eiβ, eiβ) . (8.62)

Imposing the special unitary condition, i.e. det(U) = 1, means that 2α + β = 0 mod 6.

We can canonically pick the scaling that gives the following diagonal matrix:

U = diag(e−iα, e−iα, e−iα, e−iα, e2iα, e2iα) . (8.63)

Remark 8.4. If there is a splitting to more than two groups, you will in general obtain

more than one possible assignments of U(1) charges. For example, in the any splitting of a

Lie group into two Lie subgroups case, you will always have an R∗ ambiguity in assigning

charges. This is normally picked to have a consistent charge with the literature (so probably

the simplest integer combination/with a normalisation like in the illustrated SU(3) case).

Now to generate the required U(1) charges for the tensor splitting, we associate a charge49

to each of the indices in the subgroup. For branching SU(n +m) → SU(n) × SU(m) we

look at the fundamental:

n+m→ nm ⊕m−n . (8.64)

So we associate to each SU(n) index a charge of m and to each SU(m) index a charge of

−n. We then add up the charges.

Example 8.12. For example, we associate a −1 charge for every SU(4) index and 2 for

every SU(2) lower index in the SU(6) splitting in Example 8.12. Then in the index

decomposition language, we can immediately obtain:

6̄ 7→ (4̄,1)1 ⊕ (1,2)−2 , (8.65)

by using the splitting:

ψµ 7→ (ψa, ψi) . (8.66)

Also doing that for the two index tensor case:

ψ[µν] 7→
(
ψ[ab], ψai, ψ[ij]

)
, (8.67)

we get:

15 7→ (6,1)−2 ⊕ (4,2)1 ⊕ (1,1)4 , (8.68)

remembering the conjugate the charge for anti-fundamental indices 50.

49As in the usual case in the literature.
50Remember there is some funky stuff going on when you apply the raising and lowering operators (Levi-

Civita tensors). They act non-trivially to the U(1) charges as they add a non-zero number of indices (n)

to your tensor expression. This means that ϕµ is technically not the same as ϕ[µνρσ]!
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In the Young diagram language, this is equivalent to associating a number to each of the

boxes in the splittings. This will allow you to compute the charge by just summing the

numbers in the Young diagram.

Example 8.13. Let us continue with the SU(6) splitting started in Example 8.13. To

each box in SU(4) and SU(2) we associate a charge −1 and +2. Simply sum up in each

case (6̄ and 15):

7→

 a
a
a
, 2
2

⊕
 a
a
a
a

, 2

 , (8.69)

7→
(
a
a
, •
)
⊕
(
a , 2

)
⊕
(
• , 2

2

)
, (8.70)

where I have used a to indicate the charge −1. You can see the charges match up with

6̄ 7→ (4̄,1)1 ⊕ (1,2)−2 , (8.65)

15 7→ (6,1)−2 ⊕ (4,2)1 ⊕ (1,1)4 . (8.68)

8.10 Branching using Symmetries

In this section let us further discuss branching but using symmetry arguments. We have

seen that for SU(5) the antisymmetric representation branches under SU(3)×SU(2) as 51

10 7→ (3̄,1)⊕ (3,2)⊕ (1,1) . (8.71)

The question is now as follows: can we reproduce that using symmetry arguments? Let us

note first that the 10 rep is the antisymmetric representation, i.e.

10 = (5⊗ 5)A , (8.72)

where the subscript A denotes the antisymmetric part of the multiplication, i.e. after the

Clebsch-Gordon decomposition is performed. The fundamental rep 5 has the branching

5→ (3,1)⊕ (1,2) , (8.73)

under SU(3) × SU(2). We can now use symmetry arguments to obtain the branching of

10 in SU(5) - we simply take the antisymmetric part as follows:

10 = (5× 5)A = [((3,1)⊕ (1,2))⊗ ((3,1)⊕ (1,2))]A

= [(3,1)⊗ (3,1)]A ⊕ [(3,1)⊗ (1,2)⊕ (1,2)⊗ (3,1)]A ⊕ [(1,2)⊗ (1,2)]A

= (3̄,1)⊕ (3,2)⊕ (1,1) . (8.74)

51This is in fact one of the questions on the example sheet. You should now be able to reproduce this

result using the Young diagram method.
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Note that to evaluate the second term one must regard the two 5 representations to be

unique (distinguishable). This means that in order to evaluate the term we must have, say

identified the first 5 as A and the last one as B and noted that 52,

(A,B) =
1

2
[(A,B) + (B,A)] +

1

2
[(A,B)− (B,A)] . (8.75)

Taking the antisymmetric part of this hence gives us one copy 53 of 5 or in our case, after

taking the product, (3,2). We then obtain the result as obtained from alternative methods.

This concludes our discussion on tensor representations.

8.11 SU(5) Matter Multiplet Branching

In this subsection, we will explicitly work out the SU(5) matter multiplet branching rules

as sketched out in the notes using the methods described in this section.

Distributed version:

Exercise 8.2. Try Q4 of the second sheet again! You should now be able to proceed

up to part (d) with ease. In particular, you should be able to compute the branching

of 5̄ and 10 and the corresponding U(1) charges. Using tensor methods to construct

singlets for (e) is the easiest way to proceed, for example the singlet in 5 ⊗ 5̄ is

ϵabcdeϕaψabcde. In particular, use the notations 10 ∼ ψ[µν], 5̄ ∼ χµ, 5 ∼ H̄µ and 5̄ ∼
Hµ, and the branching rule ψ[µν] =

(
u[αβ], Qαi, e[ij]

)
, χµ =

(
dα, Li

)
, Hµ = (tα, hi),

H̄µ =
(
t̄α, h̄i

)
. What is the physical significance of the last part of the question?

8.12 Proof of Schur-Weyl Duality

In this section we will provide a proof to Theorem 8.2. We will need a bit of machinery

about semisimple algebras. Take G to be any finite group, U a right module over the group

algebra A = CG and let

B = HomG(U,U) = {φ : U → U |φ(v · g) = φ(v) · g ∀u ∈ U, g ∈ G} (8.76)

Note that B acts on U from the left and commutes with the right action of A. B is

known as the commutator algebra. If U =
⊕

i U
⊕ni
i is an irreducible decomposition with

Ui nonisomorphic irreducible right A-modules, then by Schur’s Lemma we have

B =
⊕
i

HomG

(
U⊕ni
i , U⊕ni

i

)
=
⊕
i

Mni(C) (8.77)

whereMni(C) is the ring of ni×ni complex matrices. IfW is any left A-module, the tensor

product

U ⊗A W =
U ⊗C W

subspace generated by {va⊗ w − v ⊗ aw}
(8.78)

is a left B-module by acting on the first factor b · (v ⊗ w) = (b · v)⊗ w. Now we have the

following lemma.

52The bracket notation here has nothing to do with the bracket indicating branching of groups like above!
53Well, one effective antisymmetric copy.
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Lemma 8.2. Let U be a finite-dimensional right A-module.

(i) For any c ∈ A, the canonical map U⊗AAc→ Uc is an isomorphism of left B-modules.

(ii) If W = Ac is an irreducible left A-module, then U ⊗A W = Uc is an irreducible left

B-module.

(iii) If Wi = Aci are the distinct irreducible left A-modules, with mi the dimension of Wi,

then

U ∼=
⊕
i

(U ⊗A Wi)
⊕mi ∼=

⊕
i

(Uci)
⊕mi (8.79)

is the decomposition of U into irreducible left B-modules.

Proof. By the semisimplicity of all representations of G, Ac is a direct summand of A as a

left-A module. First prove (i). Consider the commutative diagram

U ⊗A A U ⊗A Ac U ⊗A A

U U · c U

·c ↪→

·c ↪→

The vertical maps are the maps v ⊗ a 7→ v · a. Now the left horizontal maps are

surjective, the right ones are injective, and the outside vertical maps are isomorphisms, so

the middle vertical map must be isomorphic. Now for (ii), consider first the case where U

is an irreducible A-module, so B = C. It suffices to show that dimU ⊗A W ≤ 1. Identify

A with a direct sum
⊕r

i=1MmiC of r matrix algebras (refer to Proposition 3.29 of [1]).

We can now identify W with a minimal left ideal of A. Any minimal ideal in the sum of

matrix algebras is isomorphic to one which consists of r-tuples of matrices zero except for

one factor, in which they are all zeros except for one column. Similarly we can identity

U with a minimal right ideal of A, so same as above but with column switched out for

row. Therefore any non-zero U ⊗A W can be identified with the matrices which are zero

except in one row and column the same factor, otherwise it will be zero. For the general

case, by Maschke’s theorem we can write U =
⊕

i U
⊕ni
i irreducible right A-modules, then

U ⊗A W =
⊕

i(Ui ⊗A W )⊕mi . Now since A is the left regular representation of G (by

definition of group algebra), Ui⊗W = C iff Ui and W correspond to the same factor of A,

as above. So U⊗AW =
⊕

i(Ui⊗AW )⊕ni = C⊕nk for some k, and this is visibly irreducible

over B =
⊕

iMni(C). Part (iii) simply follows from A ∼=
⊕

iW
⊕mi
i which gives

U ∼= U ⊗A A ∼=
⊕
i

(U ⊗A Wi)
⊕mi . (8.80)

We apply this lemma with U = V ⊗n which is a right CSn-module. Set G = Sn. The

lemma above tells us how to decompose V ⊗n into a B-module where B is the algebra of all

endomorphisms of U that commute with all permutations of the factors. So we now have:
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Lemma 8.3. The algebra B is spanned as a linear subspace of End(V ⊗n) by End(V ).

A subspace of V ⊗n is a sub-B modules iff it is invariant by GL(V ); in other words a

B-submodule is the same as a GL(V )-submodule.

Proof. If W is any finite-dimensional vector space, then SymnW is the subspace of W⊗n

spanned by all wn = n!w ⊗ ...⊗ w. Apply this to W = End(V ) proves the first statement

as End(V ⊗n) = (V ∗)⊗n ⊗ V ⊗n = W⊗n, which is compatible with the actions of G = Sn.

Since GL(V ) is dense in W which is either in the Euclidean or Zariski topology, the second

statement also follows.

The proof of Theorem 8.2 then follows from the two lemmas. In particular, we define,

SλV = V ⊗n ⊗A Vλ , (8.81)

where Vλ denotes the irrep corresponding to a partition λ. Then this is irreducible as

a GL(V )-module by Lemma 8.2. Further writing A =
⊕

λ(Vλ)
⊕mλ as a left-semisimple

decomposition we then have

V ⊕n = V ⊕n ⊗A A =
⊕
λ

(
V ⊗n ⊗A Vλ

)⊕mλ =
⊕
λ

SλV , (8.82)

which exactly gives the Schur-Weyl Duality in Corollary 8.1.

8.13 O(n) and SO(n) tensors

When we now further restrict to SO(n) tensors, in addition to symmetrisations a new oper-

ation called contraction will appear which commutes with orthogonal transformations [35].

Note that orthogonal transformations satisfy,

aijaik = aija
T
ki = δkj . (8.83)

Therefore, given a rank-r tensor one can construct a rank-(r−2) tensor by contracting two

indices,

Ti3...ir = Tiii3...ir = δi1i2Ti1...ir , (8.84)

and this action commutes with the transformation of the tensor,

T ′
i3...ir = aij1aij2ai3j3 . . . airjrTj1...jr = ai3j3 . . . airjrTj3...jr . (8.85)

We have the following proposition.

Proposition 8.13. Every O(n)-tensor can be decomposed uniquely into a traceless tensor

for which all pair traces are zero and where pair traces are taken, i.e.

Ti1...ir = T 0
i1...ir +

∑
α,β distinct

δiαiβTi1...iα−1iα+1...iβ−1iβ+1...ir . (8.86)
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Proof. Consider subspace ΣΦ of the tensors in,

Φi1...ir =
∑

α,β distinct

δiαiβTi1...iα−1iα+1...iβ−1iβ+1...ir . (8.87)

Then we need,

(T 0,Φ) = 0 , (8.88)

which can be checked by selecting all pair traces.

Under orthogonal transformations the invariant subspace ΣΦ transform amongst itself so

we deduce that for every GL(n)-tensor, and hence every Young diagram, this corresponds

to two tensor irreps — a completely traceless T 0
i1...ir

, as well as the invariant subspace ΣΦ.

However, there is a caveat, as given by the following statement.

Proposition 8.14. The traceless tensors corresponding to Young diagrams in which the

sum of the lengths of the first two columns exceeds n in O(n) must be identically zero.

Proof. Notice how the action of contraction picks two indices in the diagram and sum over

all possibilities. In the case where the numbers of the first two columns satisfy a+ b > n,

the symmetrisation and anti-symmetrisation of the tensor can always bring the indices into

the first two columns and since there are more than n indices we can arrange the indices

such that we obtain some diagram of the form,

i . . .
i . . .
. . .

= 0 . (8.89)

By anti-symmetrisation in the first column this tensor is zero, hence giving the result.

Let us illustrate this with a few examples. We first illustrate the method using tensors in

SO(n).

Example 8.14. For second-rank tensors, we can write the decomposition,

Tij =
1

n
Tkkδij +

(
Tij −

1

n
Tkkδij

)
= Φij + T 0

ij (8.90)

Then T 0
ij is a tensor with zero trace.

Example 8.15. For third-rank tensors, we can write the decomposition,

Tijk = T 0
ijk +Hkδij +Kjδik + Liδjk , (8.91)

Then T 0
ijk is a tensor with zero trace, and solving the zero-trace conditions give the following

equations,

Hj =
1

n2 + n− 2
[(n+ 1)Tiij − Tiji − Tjii] (8.92)

Kj =
1

n2 + n− 2
[−Tiij + (n+ 1)Tiji − Tjii] (8.93)

Lj =
1

n2 + n− 2
[−Tiij − Tiji + (n+ 1)Tjii] (8.94)
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using Einstein’s notation. Suppose we want to find 3⊗3⊗3 in SO(3). Then the procedure

above must be repeated for all types of tensors with different irreps in GL(n), i.e. , ,

 . (8.95)

This decomposition in fact gives seven tensors, giving the decomposition,

3⊗ 3⊗ 3 = 7⊕ 5⊕ 5⊕ 3⊕ 3⊕ 3⊕ 1 . (8.96)

Example 8.16. Let us look at a few examples showing Proposition 8.14 in effect. For the

case n = 2, we can look at the tensor of the symmetry,

→
{

1 1
2

, 1 2
2

}
, (8.97)

which has the two independent non-zero components as listed. But tracelessness requires

us to take away the components,

0 = 1 1
2

−
(

1 1
2

+ 2 2
2

)
, (8.98)

0 = 1 2
2

−
(

1 2
2

+ 1 1
1

)
, (8.99)

(8.100)

due to the antisymmetry of the system. So traceless tensors are indeed zero in this case,

as predicted by the proposition.

There is an additional effect in SO(n) Young diagram methods known as associate dia-

grams.

Definition 8.10. Permissible diagrams in Proposition 8.14 are paired into associate dia-

grams Y and Y ′ as follows. The length of the first column of Y , a satisfies, a ≤ n/2 whilst

the length of the first column of Y ′ satisfies a′ = n− a with all the other columns of Y an

Y ′ having the same length. Diagrams that are associate to themselves are self-associate.

Example 8.17. The following diagrams are associate for n = 3.

↔ , (8.101)

↔ , (8.102)

Associate diagrams have a sign difference under orthogonal transformations. For example,

under improper transformations (inversions) in SO(3), we have,

7→ , 7→ − . (8.103)
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Here the diagram with one box corresponds to a vector, whilst an antisymmetric tensor in

O(3) corresponds to the axial vector. Under proper transformations however there is no

sign difference so in SO(n) we will need to additionally identify the associate diagrams as

the same irrep.

A quick comment about Sp(n) tensors — the formalism is basically the same in SO(n)

with a few differences.

• The symplectic group Sp(n) corresponds to linear transformations which preserves

a skew-symmetric bilinear form, so if gij = −gji, a ∈ Sp(n) gives aikgijajl = gkl.

a is unimodular and satisfies det(a) = 1 so there is no distinction between signs of

transformations.

• The contraction in symplectic groups satisfy,

ϵklakialj = aij , (8.104)

and similar contraction rules apply for Sp(n)-tensors as in O(n)-tensors. The de-

composition into traceless tensors and traceful tensors is the same as in the SO(n)

case.

• Traceless tensors that correspond to Young diagrams having more than ⌊n2 ⌋ are

zero, as this corresponds to move than ⌊n2 ⌋ pairs of symmetric indices being anti-

symmetrised.

The details for Sp(n)-tensors can be found in §10.8-9 of [35].
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9 Complexification and Real Forms

In this section I would like to go back to the Cartan-Weyl formalism and discuss some

intricacies about the Killing form. We know that the Killing form can act as a bilinear

form (effectively an inner product) in weight space. But we also remarked that compact Lie

algebras in fact have a negative-definite Killing form. An inner product is by definition a

positive-definite bilinear form. This section aims to disentangle this seeming contradiction.

9.1 The Killing Form

First let us recall some facts about the Killing form. Recall that the Killing form is defined

as follows.

Definition 9.1. Define the adjoint linear operator adX : g→ g as follows:

adX : Y 7→ [X,Y ] (9.1)

With this the Killing form is then defined as follows:

Γ(X,Y ) = tr (adX ◦ adY ) (9.2)

where ◦ denotes the composition of maps.

We note that this definition is basis-independent - one can evaluate the Killing form with

respect to a specific basis which yields a real number.

The Killing form is a bilinear symmetric operation. For a semi-simple Lie algebra g, we

have the following two theorems:

Theorem 9.1. The Killing form is non-degenerate if and only if g is a semi-simple Lie

algebra.

Proof. See Theorem 4.3 of notes.

Theorem 9.2. For any nonzero X ∈ g, g is a compact semisimple Lie algebra if and only

if Γ(X,X) < 0 (i.e. the Killing form is negative-definite).

Proof. There are two proofs to this. Here I will only present one of them. Define

gij = Γ(Xi, Xj) = Tr
(
adXi ◦ adXj

)
(9.3)

where {Xi} are a basis for Lie algebra g. Writing the matrix {gij} as G, we can then choose

the coordinates on the Lie group manifold (using Sylvester’s Theorem, remembering that

we are operating the real basis)

G = diag(1, 1, ..., 1,−1, ...,−1) (9.4)

where 1 appears r times and −1 s times. By diagonalising, we can write

G′ = STGS (9.5)
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where n = r + s is the dimension of L. We note that the metric has no zeros along the

diagonal due to the non-degeneracy of the Killing form, from Theorem 9.1. Now let us

write Adg, the adjoint representation of the Lie group G as A. Recall that the matrix Lie

group O(r, s) is defined by

O(r, s) =
{
A ∈ Matr+s(R)

∣∣ATG = GA−1
}

(9.6)

Now we show the following. Using {Xi} as the Lie algebra basis, and xk the coordinate

with respect to the basis {Xk}. Writing a general element X ∈ G as

X = xkXk (9.7)

Then using

Adg(Xk) = gXkg
−1 = Aj

kXj (9.8)

then we have

Adg(X) = xkAj
kXj (9.9)

Therefore, writing out Γ(X,Y ) = Γ (Adg(X),Adg(Y )) we get

G = ATGA (9.10)

i.e. exactly the definition of the matrix Lie group O(r, s). Similarly, writing the adjoint

representation of the Lie algebra g adX using the matrix B, and ad(X) = xkBj
kXj and the

relation

Γ (adZ(X), Y ) = −Γ (X, adZ(Y )) (9.11)

we obtain

B = −G−1BTG (9.12)

We now compare this with the matrix Lie algebra so(r, s):

so(r, s) =
{
A ∈ Matr+s(R)

∣∣ATG = GA−1
}

(9.13)

So we conclude the following - the adjoint representation of G and g must be subalgebras

of O(r, s) and so(r, s) respectively. Now consider the case where G = ±1n. Then{
ATA = 1n

BT = −B
(9.14)

So the adjoint reps of G and g are subalgebras of O(n) and so(n). In particular, for X ∈ g

we have

Γ(X,X) = Tr(adX ◦ adX) = Tr
(
B2
)
= −Tr

(
BBT

)
= −

∑
ij

BijBij < 0 (9.15)

The final sign is replaced by an equal sign only whereX = 0 identically. Therefore G = −1n

and we have a negative-definite Killing form. We deduce the following - a negative-definite

Killing form implies that the adjoint group corresponding to the matrices of the adjoint
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representation of g constitutes a closed subgroup of so(n). Therefore the identity-connected

component of the automorphism group of g is a subgroup of a compact group and therefore

is also compact - i.e. by definition g is a compact semisimple Lie algebra [36] (Note that

the adjoint map Ad : G → GL(g) has kernel that is the centre54 of G (as the elements

commute through). The Lie algebra g is semi-simple, the centre is then finite so this shows

that G/Z(G) is compact. To show that G is compact, we will need use the Hopf-Rinow

theorem to show that (G,−Γ) is indeed a complete Riemannian manifold together with

Bonnet-Myers Theorem. I refer to [37] for details.) The converse of this is obvious. (For a

Lie group G the lie algebra must be compact.)

With this now I would like to present two main questions.

1. For a semisimple compact Lie algebra, we have shown in Theorem 9.2 that the Killing

form is negative-definite. It is obvious that to obtain a positive-definite bilinear form

(i.e. an inner product) on root space one can take the negative of the Killing form.

But in Theorem 4.6 of the notes for complex semisimple Lie algebras we somehow

seem to be able to define an inner product directly using

(α, β) = Γ(Hα, Hβ) (9.17)

How does this work? Is this a typo for the real compact Lie algebra case, or is the

situation different for complex semisimple Lie algebras?

2. The derivation for complex semi-simple Lie algebras show that the roots are real

in the subspace h0 of the real form of the Cartan subalgebra h ⊂ g. However, we

know that adX is skew-symmetric with respect to the bilinear form (Killing form)

and therefore has imaginary eigenvalues iα(X) (or that α(X) are pure imaginary).

Is this a contradiction?

To answer this we will need to understand what complexification and real forms are for

Lie algebras.

9.2 Complexification, Realification and Real Forms

Let us go back to the basics. First consider a vector space V .

Definition 9.2. Fix a vector space V over field k. We define the vector space V K := V ⊗kK
as follows: we let 1⊗· c be the k-linear map of V⊗kK to itself where · c denotes multiplication

by c ∈ K. This denotes scalar multiplication in V K. Then V K is the vector space in

extension field K. Alternatively, starting with a vector space W over field K, we can

restrict the definition of scalar multiplication to scalars in k to get a vector space over k,

denoted W k. This is called the vector space in restriction field k.

54The centre of a group is defined as

Z(G) = {z ∈ G | ∀g ∈ G, zg = gz} (9.16)
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Definition 9.3. For the case k = R and K = C in the above definition, and V being a real

vector space, the complex vector space V C is called the complexification of V . If W is a

complex vector space, the real vector space WR is the realification of W . Note that

(V C)R = V ⊕ iV (9.18)

as real vector spaces55 with i denoting a real linear transformation multiplication by i.

This shows that the two operations are not inverses to each other, (V C)R has twice the real

dimension of V , and (WR)C has twice the complex dimension of W .

Definition 9.4. Suppose W are V are complex and real vector spaces respectively. If

WR = V ⊕ iV (9.19)

we say V is a real form of the complex vector space W .

Proposition 9.1. Any real vector space is a real form of its complexification.

Proof. Obvious from Equation 9.18.

Now for Lie algberas. To impose a Lie algebra structure on the K vector space g = (g0)
K

the obvious thing is to define a quadra-linear map g0 × g0 × K× K→ g0 ⊗k K given by

(X,Y, a, b) 7→ [X,Y ]⊗ ab ∈ g0 ⊗k K (9.20)

This extends to the k-linear map on g × g so we have the bracket product on g. The

converse is similar - we can restrict to a subfield k by restricting to scalar multiplication

for elements in k ⊂ k. Then we have the definitions:

Definition 9.5. The complex Lie algebra (g0)C is the complexification of real Lie algebra

g0. Similarly if

gR = g0 ⊕ ig0 (9.21)

then g0 is a real form of the complex Lie algebra g.

Proposition 9.2. Any real Lie algebra is a real form of its complexification. The conju-

gation of a complex Lie algebra g with respect to a real form is a Lie algebra isomorphism

of gR with itself.

Proof. Also clear from definitions.

With these definitions it is immediately clear what we have to do. We have, both in the

lectures and in the classes, developed a consistent method to analyse complex semisimple

Lie algebras. Now given such a Lie algebra g, one can ask what is the real Lie algebra

g0 that is the real form of the original complex Lie algebra g. Once we have a consistent

correspondence, we can then look at the consequences of that and the classifications of real

forms.

Here I will illustrate a particular example - finding the real form of the Lie algebra sl2(C).

55We typically drop the (·)C
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Example 9.1. Consider the Lie algebra sl2(C). We want to find a real Lie algebra g0 such

that

g0 ⊗R C = sl2(C). (9.22)

Note that the subset of sl2(C) of non-semisimple matrices is a proper subalgebratic variety

and therefore it cannot contain a real subspace of sl2(C). So we can find a real H ∈ g0
such that ad(H) acts semisimply on g0 and is an element of the Cartan subalgebra. Now

we consider the eigenspaces of ad(H) acting on g. Note that there must be an eigenvalue-0

space h0 = R · H spanned by H. The remaining two eigenvalues must then sum to zero,

which leaves two possibilities.

1. ad(H) has real eigenvalues ±λ. Rescaling by a real scalar gives λ = 2. The resulting

decomposition of the vector space g0 into eigenspaces is then

g0 = h0 ⊕ g2 ⊕ g−2 (9.23)

Choosing X ∈ g2 and Y ∈ g−2 and again rescaling to give [X,Y ] = H gives

H =

(
1 0

0 −1

)
X =

(
0 1

0 0

)
Y =

(
0 0

1 0

)
(9.24)

This is the basis of the real form sl2(R).

2. ad(H) has complex eigenvalues i± λ, where λ is a nonzero real number. Set λ = 1.

The decomposition is now

g0 = h0 ⊕ g{1,−1} (9.25)

Choose basis B and C on g{1,−1} such that{
[H,B] = C

[H,C] = −B
(9.26)

Note we now have two choices

[B,C] = ±H (9.27)

If the negative sign is taken then g0 ∼= sl2(R) and we have

H =

(
0 1

2
1
2 0

)
B =

(
0 1

1 0

)
C =

(
1 0

0 −1

)
(9.28)

is the basis. If the positive sign is taken then

g0 ∼= su2 =
{
M
∣∣∣A† = −A, tr(A) = 0

}
⊂ sl2(C) (9.29)

and this has basis

H =

(
i
2 0

0 i
2

)
B =

(
0 1

2

−1
2 0

)
C =

(
0 i

2
i
2 0

)
(9.30)

The take is as follows. Given a real form g0 ⊂ g of a complex semisimple Lie algbera g

we can always find a real subalgebra h0 ⊂ g0 such that h0 is the real form of the Cartan

subalgebra h of g. h0 is then called the Cartan subalgebra of g0. In general (rank two

or higher), the root α ∈ ∆ of g on h0 need not be all real or purely imaginary - it can be a

generic complex number. The values of roots depend heavily on the choice of h0.
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9.3 Split Forms and Compact Real Forms

The task is now simple. We want a statement of the classification of the simple real Lie

algberas which complexifications are the classical/exceptional Lie algberas. We then want

to go the other way, i.e. starting from a complex semisimple Lie algebra g we want to

construct real forms of g. Here I will not provide a classification theorem - one can refer to

[1] for a full classification (in §26). Instead, I would like to present two distinguished real

forms possessed by all complex semisimple Lie algebras. This will ultimately lead us back

to answering the question I set out at the start of the section.

Split and compact forms represent the two extremes of behaviour of the decomposition

g = h⊕
⊕
α

gα (9.31)

with respect to a real subalgebra g0 ⊂ g. We will first give the definitions of the two real

forms.

Definition 9.6. Let g be a complex semisimple Lie algebra. The split form of g is a real

form g0 such that there exists a Cartan subalgebra h0 ⊂ g0 (where hC
0 = h) whose action

on g0 has all real eigenvalues. This means that all the roots α ∈ ∆ ⊂ h∗ of g assume all

real values on the subspace h0. We then have the direct sum decomposition:

g0 = h0 ⊕
⊕
α

jα (9.32)

where the one-dimensional eigenspaces56 jα for the action of h0. Each pair j±α generates a

subalgebra isomorphic to sl2(R).

The existence of the split form can be shown as follows. To construct a real (even rational)

form g0 of Lie algebra g we start with generators Xαi for the simple positive roots spaces of

αi and complete this to a stardard basis (Xαi , Yαi) andHi = [Xαi , Yαi ] for the corresponding

sl2(C) subspace. We then take g0 to be the real subalgebra generated by these elements -

the Cartan subalgebra h0 ⊂ g0 is then the real span of Hi. From this we have the following

claim.

Proposition 9.3. The split form construction uniquely characterises the real g0 of g.

Proof. We note that from the construction described above once h is fixed for g, the real

subalgebra h0 is uniquely determined as the span of the Hα for all roots α ∈ ∆. The

uniqueness is guaranteed as this is the only real form g0 of g which has a Cartan subalgebra

h0 acting on g0 with all real eigenvalues.

Remark 9.1. g0 is detmined up to isomorphism and is sometimes called the natural real

form of g.

There exists another more important real form in our discussion.

56Note that jα = gα ∩ g0.
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Definition 9.7. Let g be a complex semisimple Lie algebra. The compact (real) form

of g is a real form g0 such that there exists a Cartan subalgebra h0 ⊂ g0 where all roots

α ∈ ∆ ⊂ h∗ of g assume all purely imaginary values on the subspace h0. We then have the

direct sum decomposition:

g0 = h0 ⊕
⊕
α

lα (9.33)

where lα are two-dimensional eigenspaces57 on which h0 acts by rotation and generates a

subalgebra isomorphic to su2.

Compact real forms have the following properties.

Proposition 9.4. Suppose g is a complex semisimple Lie algebra and g0 ⊂ g is a real

form of g. Let h0 be a Cartan subalgebra of g0 and the complexification h = h0 ⊗ C the

corresponding Cartan subalgebra of g. Then the following are equivalent.

1. Each root α ∈ ∆ ⊂ h∗ of g assumes purely imaginary values on h0 amd for each root

α the subalgebra of lα = (gα ⊕ g−α) ∩ g0 ⊂ g0 is isomorphic to su(2).

2. The restriction of g0 of the Killing form of g is negative-definite.

3. The real Lie group G0 with Lie algebra g0 is compact.

Proof. This is the crux of the discussion so I will present the full proof. (1) =⇒ (2):

Consider the Killing form on H ∈ h0. Since the roots are purely imaginary we have

Γ(H,H) =
∑
α∈∆

(α(H))2 < 0 (9.34)

Since the subspaces lα are orthogonal to each other with respect to Γ it remains to show

that Γ(Z,Z) < 0 for an arbitrary Z ∈ lα. Let X and Y be generators of gα and g−α

respectively with H = [X,Y ] a standard basis for sl2(C). Take generators of the algebra

of lα as 
H ′ = iH

U = X − Y
V = iX + iY

(9.35)

Setting

Z = aU + bV = (a+ ib)X + (−a+ ib)Y (9.36)

then we must have

ad(Z) ◦ ad(Z) = (a+ ib)2ad(X) ◦ ad(X) + (a− ib)2ad(Y ) ◦ ad(Y ) (9.37)

− (a2 + b2) (ad(X) ◦ ad(Y ) + ad(Y ) ◦ ad(X))

Tracing over eliminates the non-cross terms so we are left with

tr (ad(Z) ◦ ad(Z)) = −2(a2 + b2) tr (ad(X) ◦ ad(Y )) (9.38)

57Note that in this case lα = (gα ⊕ g−α) ∩ g0.
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Now ad(X) ◦ ad(Y ) acts by multiplication by (n−λ)(n+λ−2)
4 ≥ 0 on the λ-eigenspace for

H (this is the factor multiplying the relevant element after raising and lowering using the

operators in sl2C, see p. 150 of [1]). So we have proven the claim. (2) =⇒ (3): First note

that the adjoint form, defined as G/Z(G) where Z(G) is the centre of G. If G is connected

then the image of the adjoint represetnation Ad : G → Aut(g) is the adjoint form (this

is clear from the fact that ker(Ad) = Z(G)). Now the adjoint form G0 is the connected

component of the identity of the group Aut(g0). In particular it is a closed subgroup of the

adjoint group of g and acts faithfully on the real vector space g0 (so preserves Γ). From

Theorem 9.2 it is clear that if Γ is negative definite then G0 is a closed subgroup of SOn(R)
so is compact. (3) =⇒ (1): Now suppose G0 is compact. Then we can construct the

group-averaging positive definite inner product on g0,

(X,Y ) =

ˆ
dgµ(ρ(g)X, ρ(g)Y ) , (9.39)

where ρ is a representation of G and µ is an appropriate measure such that this is invariant

under action of G. Then for any X ∈ g0 ad(X) is represented by a skew-summetric matrix

with respect to an orthogonal basis of g0. Then Γ(X,X) ≤ 0 and the eigenvalues of ad(X)

are pure imaginary and α(h0) ⊂ iR so ᾱ = −α for root α ∈ ∆ so (1) follows.

Proposition 9.5. Every semisimple complex Lie algebra has a unique compact form.

Proof. Define the conjugate linear involution action as σ : g→ g of a complexification

g of real g0 as for X ∈ g0 and z ∈ C

X ⊗ z 7→ X ⊗ z̄ (9.40)

This is conjugate linear, Lie bracket-preserving and σ2 = 1. Now g0 is the fixed subalgebra

of σ and conversely. Starting with the split form g0,s of g. Given a basis

{Hi ∈ h, Xα ∈ gα, Yα ∈ g−α} (9.41)

we can define a unique Lie algebra automorphism φ of g taking{
Hi 7→ −Hi

Xα 7→ Yα
(9.42)

φ is a complex linear involution that preserves g0,s. Note that σφ = φσ so the fixed part

g0,c is another real form of g with Cartan subalgebra h0,c = hσφ = ih0,s (note that here

the i appears as upon applying the automorphism φ which changes the sign of Hi the

fixed algebra of g under σφ is now the purely imaginary part - i.e. complex conjugation

and negative leaves pure imaginary numbers invariant in signs). Since the restriction of

the Killing form to h0,s, it is obvious that the restriction to h0,c is negative definite and

therefore g0,c is the compact form of g. This construction of g0,c from g0,s is reversible so

the compact form is hence unique by Proposition 9.3.
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So what have we shown? In the discussion of complex semisimple Lie algebras we have

implicitly, when discussing the root system, taken the split real form to obtain real roots.

This allows us to analyse the root system in the Euclidean plane. On the other hand, if

we solely consider real compact Lie algebras, we are forced to take effectively the compact

form of the complexified Lie algebra as that is what we obtain from the Lie algebra analysis.

This means that by complexifying the real compact Lie algebra one can in fact return to

our discussion of the root systems, and therefore reproduce all the results as illustrated in

the notes and classes. This also illustrates the extra minus sign in the Killing form. When

we choose the inner product on the root space of compact real forms (and hence on real

compact Lie algebras), there is an extra sign taking care of the fact that all roots are pure

imaginary.

Complexification in fact is purely a mathematical tool. The physics, at the end of the day,

is illustrated by a real Lie algebra. This is why the discussion of real Lie algebras and real

forms of complex Lie algebras is so important.
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10 Cartan-Weyl Decomposition, Root Diagrams and Weight Diagrams

This is a bit of a mixed botched section. I want to address a couple of issues and questions

regarding Lie algberas in general, so have thrown basically everything I want to chat about

into one giant section. Hopefully this makes sense in the grand scheme of things. I implore

you to read this section by subsections (so read the ones that interest you) - the subsections

are standalone explanations except when I explicitly refer to something I have talked about

before.

10.1 Metric tensor and coordinates

In this subsection I would like to first address a few issues concerning the metric tensor G.

Recall first from the notes the following:

Definition 10.1. The metric tensor G is defined as

Gij =
(αj , αj)

2

(
A−1

)
ij

(10.1)

This allows us to express the Killing form of two weights w,w′:

(w,w′)D = a′iGijaj (10.2)

in terms of their Dynkin label.

We discuss two issues at hand concerning G.

10.1.1 Root diagram coordinates

Let us consider B2 algebra. The Cartan matrix is

AB2 =

(
2 −1
−2 2

)
(10.3)

Let us recall the following:

Proposition 10.1. The Dynkin labels of the simple roots are the rows of the Cartan matrix.

Proof. See notes - this is more like a statement and you can check it yourself 58.

Now let us suppose you are given the simple roots: α1 = (1, 0), α2 = (−1, 1). The

coordinates of the simple roots here now are the coordinates in the root diagram, in a

Euclidean space. We can now use the Euclidean inner product between the simple roots

to compute the Cartan matrix - you should see that this returns the same Cartan matrix

above. What is going on? Why can we simply take (·, ·) as the Euclidean inner-product 59?

We note that (·, ·)D in Definition 10.1 is actually an inner product with respect to the

58If you cannot let me know.
59If you are not sure why one can simply take the Euclidean product here, have a look at [8–10]. I believe

there will also be a proof in [1, 5]
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Dynkin basis. We know from the discussion of the root systems of Lie algebras that upon

restricting the Killing form of a complex semisimple Lie algbera to the h∗R ∈ h∗ using {Hα}
as the dual basis it becomes a positive-definite biliner form. This allows us to take it as a

metric, and operate it on a Euclidean basis. We can then convert between the Euclidean

inner product from the Dynkin basis inner product, as described by the metric tensor using

a diagonalisation and a rescale of eigenvalues. To do this note first that the weights in the

adjoint basis (excluding the zero weights) are precisely the roots. Let us take two of these

roots and consider their inner product in Dynkin basis

(α, β)D = aiGijbj (10.4)

Now treat the metric tensor as a positive-definite bilinear form. We can pick a basis such

that this bilinear form has only 1s on the diagonal matrix δ. This means we need the

orthogonal matrix and a rescaling:

G 7→ OTDO = OT
√
Dδ
√
DO (10.5)

Now we can consider the root basis. We note that if we effect the following transform:

a 7→ O−1
√
D

−1
a (10.6)

This effectively maps the Dynkin basis to the Euclidean basis of the root diagram... we

have come full circle and got the result we wanted 60!

10.1.2 δ as half-sum of positive roots

We saw that δ emerged a few times (e.g. the Freudenthal formula (Eq (6.20) of notes),

the Weyl formula (Eq (6.21) of notes) and the quadratic Casimir formula (Theorem 6.4 of

notes)). We know that δ = (1, 1, ..., 1) for An - but is this true in general?

Proposition 10.2. The Weyl vector δ, defined as the half-sum of all positive roots:

δ =
1

2

∑
α∈∆+

aα (10.7)

where aα indicates the Dynkin label of the positive root α, is equal to the sum of fundamental

weights.

Proof. Firstly, you can define some element sα as the reflection of the root on your arbi-

trarily chosen hyperplane. Then we must have

sα(δ) = δ − α (10.8)

and sα permutes the positive roots apart from root α. You can also see that

(δ, α) =
1

2
(α, α) (10.9)

60As far as I know this discussion cannot be found anywhere - so here you go!
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Now, suppose ωi to be the set of fundamental weights such that

2(ωi, αj)

(αj , αj)
= δij (10.10)

Now if you write δ = aiωi, you will get

(δ, αj) = aj(αj , αj)/2 (10.11)

If you then solve this for aj , you should then get:

δ =
2(δ, αj)

(αj , αj)
ωj =

∑
i

ωi (10.12)

using Equation 10.9.

The next obvious question would be why δ? What is significant about this quantity?

Turns out it is related to some flag varieties (see this MO post for more details). This

δ is sometimes called the “Weyl vector” (see for example here), and a related question is

whether δ falls into the root lattice and what the significance of that is. There is a nice

summary here.

There is a lot more to the theory of the Weyl vector. The whole industry of Weyl symmetry

and chambers for example, is an important aspect in the theory of Lie algebras. For more

information do check out [16].

10.2 Cartan-Weyl Decomposition - revisited

Another random aspect I would like to go back to is the Cartan-Weyl decomposition. Is

there a way to understand the Cartan-Weyl basis, in particular, can we write the Killing

form in this basis? Recall that the Cartan-Weyl decomposition is for a Lie algebra g to be

written as

g = h⊕
⊕
α∈Λ

lα , (10.13)

where Λ is the root space. Take κ to be the Killing form defined in §4.2 of the notes as the

natural inner product in g. Then we know that:

1. κ
∣∣
h×h

is non-degenerate.

2. For all α ∈ H ′, the root set of the Lie algebra g, there exists a unique Hα ∈ h such

that for all H ∈ h,

κ(Hα, H) = α(H) . (10.14)

3. κ(H,Eα) = 0 where [H,Eα] = α(H)Eα.

4. κ(Eα, Eβ) = 0 for all α, β ∈ H ′ and α ̸= −β.

5. κ(Eα, E−α) ̸= 0.
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I am basically just rewriting Theorem 4.6 of the notes. But note that now we have the

following structure for κ in matrix form.

κ
in basis−−−−→

H Eα E−α Eβ E−β ...



H non-degenerate

Eα 0 1

E−α 1 0

Eβ 0 1

E−β 1 0
...

. . .

(10.15)

We note the following points.

• In the h (CSA) I can pick the basis {Hi, i = 1, ..., rk g}. But to construct the su(2)α
subalgebra it is often easier to construct Hα using the root structure. In general

however {Hα} span h but it is not a basis as in general {Hα} are linearly-dependent.

• We can rescale the Eα to get a normalised basis, which is what I have done above.

Of course it is possible to rediagonalise lα⊕ l−α to get a diagonal basis, but this then

obscures the su(2)α interpretation.

This is all I want to say about Cartan-Weyl basis for now.

10.3 Weyl group and chambers

A small interlude here. I want to define something known as the Weyl group of the root

system, which is a symmetry group of the root space under some natural involution action

of the roots. This section is quite mathematical so you are welcomed to skip if it bothers

you too much - but it will establish some of the notations that will be used later on.

The first thing to define is the Weyl group. Here we fix g a Lie algebra and h its Cartan

subalgebra.

Definition 10.2. Define an involution Wα : h→ h by

Wα(H) = H − 2
(α,H)

(α, α)
α , (10.16)

with (·, ·) denoting the usual inner product of the root system ∆. The Weyl group of the

root system ∆, denoted W, is then the subgroup of GL(h) generated by the involutions

Wα where α ∈ ∆.

The geometric meaning of the involutionWα is the reflection about the hyperplane orthog-

onal to α. We then have the following theorem.

Theorem 10.1. The action of W on the roots preserves the root space ∆.
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Proof. The action of reflection Wα maps a root into a root by the definition of a root

system [4]. If this is unclear, have a look at Theorem 7.26 of [16].

Corollary 10.1. The Weyl group is finite.

Proof. The roots span h so each w ∈W can be determined by its action on the root space

∆. In that sense W can be though of as a subgroup of the permutation group on the roots,

which is finite.

With this we can now define a base (note that the root system is based in Euclidean space).

Definition 10.3. A subset B of ∆ is called a base if:

1. B is a basis of the Euclidean space E.

2. Each root β can be written as β =
∑

α∈B kαα with integral coefficients kα all non-

negative or all non-positive.

In this sense the roots in B are known as simple. The height of a root is then defined as

h(β) =
∑
α∈B

kα . (10.17)

This is often how the simple roots are defined [1, 4, 16]. Now we introduce a bit of

terminology.

Definition 10.4. The hyperplanes Pα where α ∈ ∆ partitions E into finite many regions.

The connected components of

E −
⋃
α

Pα (10.18)

are called the open Weyl chambers of E.

Each component γ ∈ E − ∪αPα is called regular.

There is an important theorem that states the following.

Theorem 10.2. Let γ ∈ E be regular. Then the set S(γ) of all indecomposable roots (that

cannot be written as a non-negative sum of other roots) in ∆+(γ) is a base of ∆ and every

base is obtainable in this manner.

Proof. See §10.1 of [4].

The key point from the theorem is the following statement.

Corollary 10.2. The Weyl chambers are in natural one-to-one correspondence with bases.

Proof. This is clear by looking at W(γ), the Weyl chamber containing γ. Then W(γ) =

W(γ′) means γ, γ′ lie on the same side of each hyperplane Pα.

Definition 10.5. The fundamental Weyl chamber relative to base S is the Weyl

chamber W(S) =W(γ) where S = S(γ).
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The Weyl group then sends one Weyl chamber onto another. In fact W permutes the bases

of the root system ∆ (see §10.3 of [4]).

How does this help us analyse root and weight systems? The key point to note is the

following statement.

Proposition 10.3. Every vertex of the convex hull of the weights of the representation

V = ⊕αVα is conjugate to α under the Weyl group W.

Proof. The weights of V will contain a string of weights of the form

α, α+ β, ..., α− (−(α, β))β , (10.19)

the last term being exactly the term Wβ(α) so it is conjugate to α.

This seems to be not that helpful but this is now important.

Proposition 10.4. Suppose W is a Weyl chamber and e ∈ E is a point in the Euclidean

space. Then there exists exactly one point in the W-orbit of e such that it lies in the closure

of the Weyl chamber W̄.

Proof. The key points of the proof is to use the fact that the Weyl group acts transitively

on the set of open Weyl chambers [4]. See also Proposition 8.29 of [16].

We now define the following.

Definition 10.6. A point µ ∈ E is strictly dominant relative to S iff µ ⊂ W(S). It is

dominant relative to S if µ ⊂ W̄(S). From Proposition 10.4 for all µ ∈ E there exists

w ∈W such that w · µ is dominant.

This dominant point µ is in fact how we define the highest weight of the system. Typically

the fundamental weights are fixed by the Cartan matrix (see below §10.5), and hence the

Weyl chamber is fixed (this is known as the fundamental Weyl chamber associated to the

fundamental weights). Then every point µ ∈ E that satisfies for all α ∈ ∆,

(µ, α) = 2
(µ, α)

(α, α)
∈ Z (10.20)

called an integral element is then a highest weight. I don’t have time to go to all the

details here, but you should look at §8 and §9 of [16] for the details (and it will be worth

it).

Working in progress: Need to add in hand-drawn diagrams and related theories

about Weyl characters.
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10.4 Calculating root diagrams

With all the machinery set-up we are now ready to tackle root diagrams. Recall that

root systems are often the key in analysing the Lie algebra content - constructing the root

system of a a Lie algebra is quite straightforward. In this subsection I would like to present

an algorithm to compute the root system of a simple Lie algebra g, given the simple roots

of the Lie algebra g. The goal is to compute and classify Lie algebras using the root system.

Let’s therefore suppose I am given a set of simple positive roots {αi} with αi ∈ H ′, H ′

the root space (see notes, this is the space of functionals such that for T ∈ g, ad(H)(T ) =

α(H)(T )). The Cartan matrix is given by,

Aij =
2αi · αj

αj · αj

, (10.21)

with no sum on i, j. In doing so we have secretly moved to the split form of the Lie algebra

so the roots are real and can be evaluated in a Euclidean root space. The dot product

here therefore is the Euclidean product. From the arguments in §10.1 and in the notes,

we know that we can always pick the inner product (α, β) = αiβj(κ
∣∣−1

h×h
)ij and rotate the

basis by an orthogonal transformation such that the inner product is Euclidean. It is now

possible to generate the root diagram by using the following algorithm.

Proposition 10.5. The folloiwing is an algorithm to generate all roots S from th set of

simple roots ∆.

1. Let S = ∆.

2. For each pair of distinct roots, α ∈ ∆ and β ∈ S, determine the maximum and

minimum integers n± such that β + n±α are roots. The useful results are:

(i) n+ + n− = −2α·β
|β|2 .

(ii) If γ is a root, λγ the constant multiple of γ is a root if and only if λ = ±1.

(iii) If α, β ∈ ∆, then α− β is not a root.

(iv) Any root string has at most length of 4.

(v) For α, β ∈ ∆, the α-string through β

Sα,β =
{
β + ρα ∈ S

∣∣ ρ ∈ Z
}

(10.22)

has length

1−
2α · β
|α|2

∈ N . (10.23)

(vi) If α · β ≶ 0 then α± β is a root.

3. Repeat (2) until exhaustion. The positive root set is S.

4. The full root set is then S ∪ (−S).
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Proof. The proof is basically just ultilising Proposition 6.1 of the notes together with a lot

of root system facts. I will refer to [38] for the details.

The proof of (i) is a bit more complicated (Proposition 3 of [38]). The idea is to consider

the vector space

V =
⊕
n∈Z

lβ+nα , (10.24)

and notice that this space is reducible (since this space is one-dimensional and invariant

under the su(2)α action). This immediately means that there exists integers p, q with

p ≤ 0 ≤ q such that β + nα is a root iff p ≤ n ≤ q. Now constrain using the action of

[Hα, ·].

(iv) and (vi) comes from Theorem 6.1 of the notes. (ii), (iii) and (v) follows from the

intermediate steps in constructing root strings, see [38] for details (Definition 3, Theorem

1 and Lemma 12). The multiple property is proved in §8.3 of [4].

This is a bit complicated to explain without going into full details so let us illustrate this

with an example.

Example 10.1. Let us look at B2
∼= so(5)C. The simple roots in this case is α1 = (1, 0)

and α2 = (−1, 1). Starting with ∆ = {α1, α2}, we have α1 · α1 = 1, α1 · α2 = 2 and

α2 ·α2 = −1 (remember we are using the Euclidean inner product here). So setting S = ∆,

we can then look at the α1-string through α2, α2 + nα1.

• α2 − α1 is not a root by (iii) of Proposition 10.5. So n− = 0.

• From (i) and (v) of Proposition 10.5 we have n+ = 2.

• So we add α2 + α1 and α2 + 2α1 to set S.

Now we look at S = {α1, α2, α1 + α2, 2α1 + α2}, then we have:

• α1-strings through any s ∈ S will not lead to new roots since 2α1 is not a new root

by (ii) of Proposition 10.5 and the others is the same as the root string Sα1,α2
.

• Sα2,α1
gives n− = 0 and n+ = 1, so generates α1 + α2, which we already have.

• Sα2,α1+α2
is redundant again.

• Sα2,α1+2α2
gives n+ = 0 = n− since both 2α1 and 2(α1 + α2) are not roots.

So we deduce by exhaustion that there are no more roots. The full root set Φ is therefore,

Φ = {±α1,±α2,±(α1 + α2),±(2α1 + α2)} (10.25)

giving the root diagram in Figure 10.1.
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α2

α1

Figure 10.1: Root Diagram of B2.

Distributed version:

Exercise 10.1. Repeat the analysis of the root system of B2 to the other three

rank-2 Lie algebras, A2, D2 and G2. In each case,

1. Write down the Cartan matrix and metric tensor. Invert to find the simple

roots α1 and α2 in the Euclidean basis.

2. Find the root system.

3. Draw the root system and verify these are exactly as illustrated in p.118 of the

notes.

10.5 Weight diagrams

Now we move on to weight diagrams. In particular I want to introduce an algorithm that

replaces the one on p.127 of the notes (as I find it quite confusing to check what “all the

weights” is) to find all the weights given the highest weight Λ.

Proposition 10.6. Let us suppose dΛ is the irreducible representation of g with highest

weight Λ. Let |Λ⟩ be the Dynkin index of the highest weight. To generate all the weights,

we use the following algorithm.

1. Set the set of weights S = {Λ}.

2. For each element µ ∈ S, write,

µ =
∑

µiωi , (10.26)

where ωi are the fundamental weights of g. Then we construct all weights of the form

µ−
r∑

i=1

miαi (10.27)

where αi are the simple roots from S for all 0 ≤ mi ≤ λi where λi is the Dynkin

index of µ and mi ∈ N. We explicitly use the Dynkin-index basis of the simple roots

αi.

3. Exhaust the previous step to generate the full weight system.
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Proof. This is known as the highest weight system and it is covered in most Lie algebra

books, see for example, [9, 16].

Again let us illustrate this with an example.

Example 10.2. Consider G2 with the Cartan matrix,

AG2 =

(
2 −1
−3 2

)
(10.28)

and consider its fundamental irrep where |Λ⟩ = |1, 0⟩. Then go through the algorithm.

• Start with |1, 0⟩. We can apply E−α1
once to get

|1, 0⟩
−α1−−→ |−1, 1⟩ .

• Dynkin index of the second entry is +1 so apply E−α2
once to get

|−1, 1⟩
−α2−−→ |2,−1⟩ .

• Dynkin index of the first entry is +2 so apply E−α1
twice to get

|2,−1⟩
−α1−−→ |0, 0⟩

−α1−−→ |−2, 1⟩ .

• |0, 0⟩ terminates so we can only apply E−α2
to |−2, 1⟩ once to get

|−2, 1⟩
−α2−−→ |1,−1⟩ .

• Finally apply once of E−α1
to get

|1,−1⟩
−α1−−→ |−1, 0⟩ .

At this point we need to check degeneracies,. But there are none with the same H =

(H1, H2) eigenvalues so there is no degeneracy. This is the 7 rep of G2.

To draw the weight diagram we can rotate it back into standard Euclidean basis. The

fundamental weights are defined as

µ
i
= Bijαj , (10.29)

where Bij is the inverse of the Cartan matrix. So using

α1 = (1, 0) (10.30)

α2 =
1

2
(−3,

√
3) (10.31)

We get

µ
1
=

1

2
(1,
√
3) (10.32)

µ
2
= (0,

√
3) . (10.33)

The weight diagram of 7 of G2 is then sketched out in Figure 10.5.
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Λ1

Λ2

(a) Weight diagram of the fundamental repre-

sentation of G2 in the Dynkin basis.

µ1

µ2

(b) Weight diagram of the fundamental repre-

sentation of G2 in the Euclidean basis.

Figure 10.2: The weight diagram of the fundamental representation of G2 in different

basis. Note that the two weight diagrams are not scaled with respect to each other.

Distributed version:

Exercise 10.2. Repeat for the irrep of G2 defined by the highest weight |Λ⟩ = |0, 1⟩.
Plot the weight diagram. Compare this with the G2 root diagram. What is this

represestation of G2?

Distributed version:

Exercise 10.3. Recall that in Theorem 6.3 of the notes we have the Weyl formula:

dim(λ) =
∏

α∈∆+

(λ+ δ, α)

(δ, α)
, (10.34)

with δ = 1
2

∑
α∈∆+

α or with Dynkin labels all being one. Calculate the dimension

of the spinor representation 16 of so10 in Q4 of Sheet 3 using this formula now that

we have all the relevant elements defined.

10.6 Projection matrices and branching

The final little piece of information concerns the analysis of branching rules,

R(G) → R(H) =
⊕
s

R(H)
s , (10.35)

where R
(H)
s are irreps of H (see Eq. (1.38) of the notes). It is often easier to analyse the

embedding of H in G in terms of a projection matrix that takes the roots and weights

of g into h, the Lie algebras of G and H respectively. The existence of these matrices can
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be trivially proven as the roots of h must be identified with a subset of that of g since by

definition of branching H ⊂ G as a subgroup.

It is perhaps interesting to look at the effect of the Weyl group defined in §10.3 on the

projection matrices. Clearly, the Weyl-reflected root diagrams give the same embedding

but the coordination of the weight space of G will now be different. This normally means

the projection matrix will just have different entries, as we will need to fix some initial

coordinates to analyse the projection matrices of G onto H.

The question now becomes how we choose such a coordination. This is basically done by

requiring the highest weight of an irreducible representation of g to be projected to that

of h, say the fundamental rep. Let us look at some examples to illustrate this point.

Example 10.3. Let us analyse the branching projection matrix of SU(3)→ SU(2)×U(1).

To do this we first normalise the U(1) charge to 3Y , Y being the hypercharge so P is an

integer matrix. We want to project

P

(
a1
a2

)
=

(
b1
u1

)
, (10.36)

where ai, bi and ui are the weights of SU(3), SU(2) and U(1) respectively. In particular

we have also nominally set b1 to be 2I3 of SU(3). Apply this to

3→ 2−1 ⊕ 1−2 (10.37)

we then are able to fix

P =

(
1 0

1 2

)
. (10.38)

It is now obvious to check that this projection matrix also works for the adjoint rep 8 of

SU(3), the branching rule exactly gives

8→ 30 ⊕ 21 ⊕ 2−1 ⊕ 10 . (10.39)

Distributed version:

Exercise 10.4. Work out the projection matrix of P5 for the branching rule of

SU(5)→ SU(3)× SU(2). You may need the branching rules

5→ (1,3)⊕ (2,1) (10.40)

5̄→ (1, 3̄)⊕ (2,1) (10.41)

10→ (1,1)⊕ (2,3)⊕ (1, 3̄) (10.42)

1̄0→ (1,1)⊕ (2, 3̄)⊕ (1,3) . (10.43)

Also work out the U(1) dual vector. Verify all of this with the data you are given

in Q3 of Sheet 3.
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Working in progress: Include discussion on how weight diagrams are related to root

diagrams. Also a discussion on the dual vector operator.
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11 Subalgebras, Subgroups and Dynkin Diagrams

In this short section I would like to highlight why the algorithm provided in §6.3 in the

notes on finding subalgebras of Lie algebras g using Dynkin and extended Dynkin diagrams.

Subalgebras and subgroups are often important as in physics symmetry breaking often

requires one to find the subgroup of an existing group under some physical processes.

11.1 Subalgebras and Extended Dynkin Diagrams

Let us first, for a complete discussion, recall the definitions of a subalgebra.

Definition 11.1. A Lie subalgebra h of Lie algebra g is a subspace h ⊂ g that is closed

under the bracket operation, i.e. if X,Y ∈ h, then [X,Y ] ∈ h.

Similarly, we have

Definition 11.2. A Lie subgroup H of Lie group G is a subset H ⊂ G that is also a

group.

We recall from the notes the following definitions.

Definition 11.3. A maximal subalgebra is a subalgebra h of g such that there are no

other subalgebras contained between g and h. i.e. A subalgebra j ⊂ g such that

h ⊂ j ⊂ g (11.1)

does not exist. Here we use the ⊂ notation to denote proper containment., i.e. the

containment excludes the trivial containment g ⊆ g.

We also define the notion of a regular subalgebra.

Definition 11.4. A regular subalgebra g′ of a Lie algebra g is a subalgebra with the

property that given the root space decomposition of g as

g = h⊕
⊕
α∈∆

gα (11.2)

we can write the root space decomposition of g′ as

g′ = h′ ⊕
⊕
α∈∆′

gα (11.3)

such that h′ ⊂ h as a subalgebra and ∆′ ⊂ ∆ is a subset of the roots.

Let us illustrate this with an example.

Example 11.1. Consider A3 ⊕ A1 ⊂ A5, or g′ = sl4 ⊕ sl2 ⊂ sl6 = g. We can take

the Cartan subalgebra h′ to be the diagonal matrices so clearly h′ ⊂ h. We note that

dim(h′)+1 = dim(h) as there is a one-dimensional subspace of h generated by the elements

H = diag(1, 1, 1, 1,−2,−2) (11.4)
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which indicates the extra u(1) factor61. The root vectors of g′ are just the root vectors of

g with non-zero elements on the two diagonal blocks. We have therefore shown that g′ is

a regular subalgebra of g.

Example 11.2. Let us look at a counter example - a non-regular subalgebra. Consider

g′ = A2 ⊕ A1 ⊂ A5 = g. Using the Pauli matrices {σi}i=1,2,3 and the Gell-Mann matrices

{λj}j=1,...,8 as basis of sl2 and sl3 respectively and defining{
σ0 = 12

λ0 = 13

(11.5)

then every 6× 6 matrix can be written as

{σi ⊗ λj}i=0,...,3; j=0,...,8 (11.6)

Note that [σ0 ⊗ λi, σj ⊗ λ0] = 0. So the Cartan subalgebra of g′ is generated by

{σ3 ⊗ λ0, σ0 ⊗ λ3, σ0 ⊗ λ8} (11.7)

So h′ ⊂ h. However, looking at the root vectors:

{σ± ⊗ λ0, σ0 ⊗ t±, σ0 ⊗ u±, σ0 ⊗ v±} (11.8)

where t± = 1
2 (λ1 ± λ2), u± = 1

2 (λ4 ± λ5) and v± = 1
2 (λ6 ± λ7), we see that ∆′ ⊊ ∆. So

this is not a regular subalgebra of g.

In the lecture notes, we have set out an algorithm that allows us to compute regular

subalgebras using Dynkin diagrams [40]. In [40], two notions of subalgebras are introduced.

Definition 11.5. R-subalgebras are subalgebras that are contained in some regular

subaglebra of Lie algebra g. Otherwise the subaglebra is known as an S-subalgebra.

Before we continue again let us recall the definitions of simple and semisimple in the context

of Lie algebras.

Definition 11.6. An abelian Lie algebra is a Lie algebra that satisfies [g, g] = 0.

Definition 11.7. A simple Lie algebra is a Lie algebra that contains no proper ideals and

is not abelian.

Definition 11.8. A direct sum of simple Lie algebras is known as a semisimple Lie

algebra.

Definition 11.9. A reductive Lie algebra is the direct sum of a simple and an abelian

Lie algebra.

61The reason why this is not in h′ is intuitively quite clear. g′ contains a tensor sum sot eh two algebras

A3 and A1 should be independently generated. If this element is contained in h′ then the two algebras are

no longer linearly independent of each other.
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Semi-simple Lie algebra Dynkin Diagram

An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Table 11.1: The list of Dynkin diagrams for semi-simple Lie algebras.

We would like to classify all reductive subalgebras. This requires us to look for all maximal

regular subalgebras as well as maximal S-subalgebras. We note that a maximal subalgebra

may not be semisimple - here we restrict to the cases where all maximal subalgebras are

semisimple. We state without proof the following result.

Lemma 11.1. Every reductive subalgebra of a Lie algebra g that contains an abelian ideal

is an R-subalgebra.

Proof. See Dynkin’s original paper [40].

As it turns out the R-subalgebra case is much more easily dealt with and from now on we

will focus on this (i.e. identifying regular subalgebras). Let us begin by considering g′ ⊂ g

which is a regular subalgebra and ∆′ ⊂ ∆ be the set of roots of g′ (where Π′ ⊂ ∆′ is the

set of simple roots). Recall that if α′, β′ ∈ Π′, then α′ − β′ /∈ ∆′. (In fact α′ − β′ /∈ ∆

otherwise this will lead to a contradiction where α′ − β′ ∈ ∆′.) This means the following:

Proposition 11.1. To find regular subalgebras of g, we set to find sets of Π′ ∈ ∆ such

that if α′, β′ ∈ Π′ then

α′ − β′ /∈ ∆ (11.9)

Then the subalgebra will be generated by the set of elements {e±α′ , hα′} where α′ ∈ Π′.

Proof. This is clear from the analysis above.

To do this Dynkin therefore introduced the notion of Extended Dynkin Diagrams (see

Figures 11.1 and 11.2) with the help of adding in a new root.

Definition 11.10. An extended Dynkin diagram is formed with the root set together

with the most negative root. For the root set ∆ of Lie algebra g, the new root set is

∆̃ = ∆ ∪ {−θ} (11.10)
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Semi-simple Lie algebra Extended Dynkin Diagram

Ãn

B̃n

C̃n

D̃n

Ẽ6

Ẽ7

Ẽ8

F̃4

G̃2

Table 11.2: The list of extended (affine) Dynkin diagrams for semi-simple Lie algebras.

where θ is the highest (positive) root of g. This root system is called the extended

Π-system where as the original root system is knwon as the Π-system.

Using this we can now restate Theorem 6.5 of the notes.

Theorem 11.1. Up to isomorphism all maximal semisimple subalgebras of g are obtained

by consider all root subsets

S̃ ⊂ ∆ ∪ {−θ} (11.11)

where θ is the highest root of g. In particular we have the following algorithm regarding the

use of extended Dynkin diagrams.

1. Regular semisimple maximal subalgebras g′ can be obtained by considering the Dynkin

diagram that has one node removed from the extended Dynkin diagram of g, with the

following exceptions that are not maximal

(a) F4, ∆ ∪ {−θ} \ {α3}: A3 ⊕A1 ↪→ B4 ↪→ F4.

(b) E7, ∆ ∪ {−θ} \ {α3}: A3 ⊕A3 ⊕A1 ↪→ D6 ⊕A1 ↪→ E7.

(c) E8, ∆ ∪ {−θ} \ {α3}: A3 ⊕D5 ↪→ D8 ↪→ E8.

(d) E8, ∆ ∪ {−θ} \ {α5}: A5 ⊕A2 ⊕A1 ↪→ E6 ⊕A2 ↪→ E8.

(e) E8, ∆ ∪ {−θ} \ {α6}: A7 ⊕A1 ↪→ E7 ⊕A1 ↪→ E8.

2. Reductive semisimple maximal subalgebras g′′ ⊕ u(1)C is obtained by removing one

node from the Dynkin diagram of g.

Proof. First consider the regular semisimple maximal subalgebras. The extended Π-

system of Lie algebra g has the following property. Choosing the lowest root α0 = −θ,
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where θ is the highest root, means that α0 − αj for any root αj is not a root. This

means that
2(α0, αj)

(α0, α0)
∈ Z (11.12)

2(α0, αj)

(αj , αj)
∈ Z (11.13)

so the extended Π-system obeys the same relations as a Π-system with an extra

linear relation between the roots - the system is linearly-dependent. Now removing

one root from the extended Π-system leaves a linearly-independent system, with the

roots {αi} obeying the relation

2(αi, αj)

(αj , αj)
= −(n+ − n−) (11.14)

This means that the resulting algebra is still a Lie algebra, and the roots are simple

roots of a regular maximal subalgebra of g. The system may not be indecomposable

so the resulting algebra may not be semisimple, but we have restricted to the semisim-

ple case (i.e. discard all non-semisimple algebras obtained from this method). The

exceptional cases are discovered later - one can follow the discussions in [9, 39, 41].

My choice of root conventions follow [9]. For the reductive case, notice that these are

parabolic subalgebras and are algebraically generated by the Cartan-Weyl basis of g

without eα. Removing e−α as well from the Cartan-Weyl basis62, we see that there is

an extra hα left over which generates an additional u(1)C subalgebra. Removing the

set {e±α, hα} gives the semisimple Lie algebra which is a subalgebra of this reductive

subalgebra of the form g′′ ⊕ u(1)C.

To obtain S-subalgebras one must follow a different approach - this is discussed in §8.4 of

[9].

We also note that promoting the subalgebra to the subgroup level requires us to again

consider global arguments as discussed in earlier sections and in [1]. In particular, discrete

quotients may affect our results. As an example, the maximal subalgebra of E8 is E6⊕A2,

but in the group level the maximal subgroup of E8 is E6 × SU(3) \ (Z/3Z).

11.2 Symmetry Breaking in Physics

Symmetry breaking is ubiquitous in physics. Often times due to some physical effect a

high-energy gauge group G will be broken down to a smaller symmetry H. The principle

is as follows:

Proposition 11.2. Let G be the high-energy gauge group in which the subgroup G′ ⊂ G

is broken. Then the low-energy symmetry will be the commutant of G′, i.e. the group H

where G ⊃ G′ ×H times the abelian part that commutes with G′.

Proof. This is related to Goldstone’s Theorem. See Advanced Quantum Field Theory.

62Or Chevalley basis.
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If the centre of the group G is discrete, or that the maximal subgroup has a discrete quo-

tient, then its effects will be picked out by global topological effects that are perturbatively

inaccessible. In particular in the perturbative regime we can operate solely on the algebra

level.

We are told that the world we know is govern by symmetries. Symmetries naturallly pro-

vide invariants known as conserved quantities of the space by Noether’s theorem, which in

the end allow us easier access to the system as these conserved quantities, such as energy

and momentum, provide physical laws that systems must obey provided that the symmetry

exists. However, it is not true that all symmetries (that we have invented) are obeyed for

all the possible physical models. One can, for example, imagine writing down a theory that

contains terms that do not respect the symmetry. On the other hand, one can also imagine

that the symmetry is ‘broken’ by some mechanism, such as a phase transition, such that

the physical state that appears at first seems to do not respect the original symmetry of the

theory. What we have just described above are the two ‘senses’ of the symmetry breaking

in physics, summarised below:

• Explicit symmetry breaking. This is when the equations of motion explicitly

violates the symmetry being considered. Typically, if the theory has a Lagrangian

description, this is illustrated by an explicit set of terms in the Lagrangian that vary

under the symmetry being considered. A common example is explicit supersymme-

try breaking, where terms that violate supersymmetry (SUSY) are written down as

‘small violations’ of a supersymmetric theory (for example, say the MSSM) and its

phenomenological effects are analysed.

• Spontaneous broken symmetry. This is typically manifested when there is a

degeneracy in the vacua 63

In your AQFT course you will encounter the latter type of broken symmetry and study

that in more detail. In particular, the Higgs mechanism is in fact an explicit example

of spontaneous broken symmetry where part of the Standard Model gauge symmetry is

broken to the U(1) gauge group,

SU(2)L × U(1)Y → U(1)EM . (11.15)

This mechanism is in fact the reason why the quarks and leptons acquire a mass via

something known as the Yukawa term - as the Higgs boson acquires a VEV, the Yukawa

term provides a Dirac-type coupling to the mass matrices and hence the massless quarks

and charge leptons acquire the necessary mass terms. Another typical example is in string

theory - to study Heterotic E8 × E8 string compactifications, one picks the first E8 as

the gauge group and choose some relevant vector bundle with an associated gauge group

G ⊂ E8 such that the low-energy gauge group is the commutant of G in E8. A typical

63For an extremely insightful physics discussion, see [42]. The symmetry is not realised as symmetry

transformations of the physical states of the theory, and in particular they transform the vaccuum state.

However, the full theory still contains the full symmetry being considered.
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choice is a rank-5 line bundle which gives G ≃ SU(5) so the commutant is some SU(5)

with a bundle of abelian factors (which may have phenomenological consequences) [43, 44].

I will leave this discussion here for you to ponder and think about after your AQFT and

Strings II courses.

Working in progress: There will be a more rigorous discussion for symmetry breaking

later.
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12 Casimirs

In the lectures and problem sheets we have encountered something known as the quadratic

Casimir. The quadratic Casimir turns out to be very useful at identifying irreducible

representations of su3. Is that the only invariant combination we can find in a Lie algebra

- are there any other objects of a similar property that we can construct? We will aim to

answer this question in this subsection.

To understand the theory of Casimirs, let us take a step back and look at the structure of

Lie algebras and look at a more general structure. We will deduce new Casimir operators

in that manner.

12.1 Universal Enveloping Algebra

First let us recall what the definition of an algebra is (for completeness).

Definition 12.1. An algebra is a ring R together with the action of a field F on R such

that multiplication and addition of the ring is compatible with the field action.

An associative algebra is an algebra that satisfies the associative property.

As alluded before the Lie algebra is an algebra (clearly, hence the name). It is important to

note that it is possible to construct a Lie algebra from any associative algebra U by simoply

considering the same vector space and defining the Lie bracket as the commutator with

respect to the associative product in U, i.e. if a, b ∈ U, we can construct the Lie bracket,

[a, b] = a · b− b · a , (12.1)

where · is the associative product in U. The important statement is that we can go in the

opposite direction - given a Lie algebra g, it is possible to construct an associative algebra U

which contains g as a subspace and for which the commutator that naturally exists in U will

reproduce the Lie bracket for g when restricted to g. This motivates the following theorem.

Theorem 12.1. For any Lie algebra g, there exists an associative algebra with identity

denoted U(g) together with the map ι : g→ U(g) such that the following properties hold:

• ι([X,Y ]) = ι(X)ι(Y )− ι(Y )ι(X) for all X,Y ∈ g.

• ι(X) generates the algebra U(g), so it is itself the smallest subalgebra with identity

containing all ι(X).

• (Universal property) Suppose A is an associative algbera with identity and j : g→ A
is a linear map such that j([X,Y ]) = j(X)j(Y ) − j(Y )j(X) for all X,Y ∈ g. then

there exists a unique algebra homomorphism ϕ : U(g) → A such that ϕ(1) = 1

and ϕ(ι(X)) = j(X) for all X ∈ g. In other words, the map j splits through the

homomorphism ϕ; a universal enveloping algbera U(g) is a universal initial object

such that ιU : l→ U(l) in the category of enveloping algberas of l.
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The pair (U(g), ι) is known as a universal enveloping algbera of g.

Proof. Noting that the tensor product on vector spaces is associative, define the tensor

algebra T (g) over g as

T (g) =
∞⊕
k=0

g⊗k . (12.2)

Each element of T (g) has finite linear combinations of elements in g⊗k for each k in the sum.

T (g) is then an associative algebra with identity if we define the product of two elements

simply by using the tensor product, i.e. for uI = ui1 ⊗ ...⊗ uik and vI = vj1 ⊗ ...⊗ vjl we
have

uI · vJ = uI ⊗ vJ (12.3)

and extend the product by linearity. Then the identity element 1 ∈ C = g⊗0 is the

multiplicative identity for T (g), and the associativity of the tensor product assutures that

T (g) is an associative algebra.

Now we need to show that T (g) has the universal property. We construct the map ϕ :

T (g) → A for any associative algbera with identity A by restricting ϕ to g⊗k to be the

unique linear map g⊗k → A such that

ϕ(Xi ⊗ ...⊗Xk) = j(X1)...j(Xk) , (12.4)

for any linear map j : g → A. It is straightforward to check that ϕ is an algbera homo-

morphism and if ϕ is to be an algbera homomorphism that agrees with j on g then this is

the unique form.

Now we construct U(g) as a quotient of T (g). We take the smallest two-sided ideal of

T (g), j, where for all α ∈ T (g) and β ∈ j, αβ, βα ∈ j, to contain all the elements of form

X ⊗ Y − Y ⊗X − [X,Y ] , (12.5)

where X,Y ∈ g. So j is the space of elements of the form

N∑
j=1

αj(Xj ⊗ Yj − Yj ⊗Xj − [X − j, Yj ])βj , (12.6)

where Xj , Yj ∈ g and αj , βj ∈ T (g). We form the quotient vector space T (g)/j and we can

check that the kernel of ϕ will contain all the elements of the form in Eq.(12.5) and is a

two-sided ideal so ker(ϕ) ⊃ j. Hence the map ϕ : T (g) → A factors through U(g) which

gives the desired homomorphism. The uniqueness of U(g) is guaranteed by the fact that

it is spanned by products of elements of g.

12.2 Casimirs and Invariant Tensors

With the universal enveloping algebra defined, we can now construct something known as

the Casimir which belongs to the centre of U(g).
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Definition 12.2. A Casimir element is a distinguished element of the centre of the

universal eveloping algebra Z(U(g)) of Lie algebra g.

A prototype example of a Casimir element is the quadratic Casimir, as defined in the

lectures as follows.

Definition 12.3. The quadratic Casimir operator of a semi-seimple Lie algebra } is
defined as

C2 = κijTiTj , (12.7)

where κij is the Killing form and Ti are the generators of the Lie algebra g. It is straight-

forward to show that the value of the quadratic Casimir operator is independent of the

choice of the basis (see Proposition 10.5 of [16]). To check that C2 indeed is a distinguished

element of Z(U(g)) is also straightforward - it is straightforward to check [Xi, C2] = 0 for

all Xj ∈ g, so since U(g) is generated by the elements of g we then see that C2 commutes

with every element of U(g) and hence is in the centre of U(g).

It is now straightforward to generate this notion to different orders known as the ‘higher-

order Casimir operators’.

Definition 12.4. The higher-order Casimir operators form a distinguished basis of

the centre Z(U(g)), given by homogeneous polynomials,

Cn = da1...anT
a1 ...T an (12.8)

where T a are the generators of g with da1...an being the suitable invariant tensors of the

adjoint representation. The order n of the Casimir operator Cn is the order n of the

polynomial.

Recall that representation matrices in the adjoint representation are just the structure

constants. Since the Casimir operators are distinguished elements of the centre of the

universal enveloping algebra U(g), they are homogeneous polynomials in the generators

of g and therefore constitute a maximal set of algebraiically indepedent elements of the

centre. It also follows that they are invariant tensors of the adjoint representation (as they

can be represented by structure constants effectively).

Proposition 12.1. The Casimir operators are in one-to-one correpondence with the set

of tensors that generate the space of adjoint representation invariant tensors.

Proof. To show this let us look at the polynomial,

P = c1 +
∑

taT
a +

∑
a,b

tabT
aT b + ... , (12.9)

where T a are the generators of g. Supppose this polynomial belongs to the centre of U(g).

Then it is sufficient that all the coefficients ta1...an are invariant tensors of the adjoint

representations, as the G-invariance of the element requires the coefficients to all be in the

adjoint representation such that the transformation leaves it in the universal enveloping

algbera U(g) 64. The converse is also true.
64To further see this point, look at §17 of [9] or [45].
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We have deduced that all Casimir operators of g are of the form

Cn = da1...anT
a1 ...T an (12.8)

To see this explicitly, note that for the quadratic Casimir, which is,

C2 = κabT
aT b , (12.7)

we have that the Killing form κab ∝
∑

c,d f
ac
d f

bd
c . We however note that although other

elements of the centre Z(U(g)) can be obtained by taking the tensors tr(adT i ◦ ... ◦ adTn),

it is not necessarily true that they are all algebraically indepedent so they do not typically

provide Casimir operators. There is however an independent high-order Casimir operator

for each order (which for the case An you can see [9]).

There is clearly a lot more to the theory of invariant tensors and Casimirs. I implore you

to read §14 and §17 of [9] for more on that.

Working in progress: Include discussion on how indices and Casimir operators are

used. Section on affine Lie algebras at some point.
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13 The Standard Model

In Questions 2-3 of Sheet 3 we have been looking at the weight systems and branchings of

SU(5). We have shown after (some) work:

10⊕ 5̄→ (3,2)1/3 ⊕ (3̄,1)−4/3 ⊕ (1,1)2 ⊕ (1,2)−1 ⊕ (3̄,1)2/3 (13.1)

where UY (1) charge is attached as a subscript. This branching is precisely the representa-

tion for one standard model family. To see this, let us first recall what the Standard Model

is.

The Standard Model is a chiral quantum field theory that is gauged under local transfor-

mations of the Standard Model gauge group:

GSM = SU(3)C × SU(2)L × U(1)Y (13.2)

The SU(3)C being the colour gauge symmetry, SU(2)L the electroweak symmetry on left-

handed particles and U(1) typically known as the hypercharge. We denote the fundamental

gauge fields as GA
µ , W

a
µ and Bµ, which after spontaneous symmetry breaking we will write

GA
µ , W

±
µ , Zµ and Aµ. The Lagrangian for the kinetic and self-interaction terms of the

gauge bosons is then:

Lgauge = −1

4

(
GA

µν

)2−1

4

(
W a

µν

)2−1

4
(Bµν)

2−ΘGG
A
µνG̃

A
µν−ΘWW

a
µνW̃

a
µν−ΘBBµνB̃µν (13.3)

Note that here the topological θ-terms are allowed a priori. The fermionic matter content

can be summarised below:

(3,2,
1

6
) : Qi

L =

{(
uL
dL

)(
cL
sL

)(
tL
bL

)}
(13.4)

(3̄,1,
2

3
) : uiR = {uR, cR, tR}

(3̄,1,−1

3
) : diR = {dR, sR, bR}

(1,2,−1

2
) : Li

L =

{(
νe,L
eL

)(
νµ,L
µL

)(
ντ,L
τL

)}
(1,1,−1) : eiR = {eR, µR, τR}
(1,1, 0) : νiR = {νe,R, νµ,R, ντ,R}

where the right-handed neutrinos can be neglected from the model. There are two pieces

in the Lagrangian for the fermions. The first is the kinetic term:

LkineticF = iL̄i
L /DL

i
L + iQ̄i

L /DQ
i
L + iēiR /De

i
R + iν̄iR /Dν

i
R + iU

i
R /Du

i
R + id̄iR /Dd

i
R (13.5)

The covariant derivative is written as:

Dµ = ∂µ − igsGA
µT

A − igW a
µT

a − ig′Y Bµ (13.6)
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The Yukawa couplings are

LYukawaF = −ydijQ̄i
LHd

j
R − y

u
ijQ̄

i
LH̃u

j
R + yeijL̄

iHejR

(
+yνijL̄

i
LHν

j
R

)
+ (h.c.) (13.7)

The Higgs field is a complex scalar doublet in the system:

H =

(
H+

H0

)
(13.8)

with indices (1,2, 12), with Lagrangian

LHiggs = DµH(DµH)† +m2|H|2 − λ|H|4 (13.9)

So the Standard Model Lagrangian is given by, in general,

LSM = Lgauge + LkineticF + LYukawaF + LHiggs (13.10)

There is of course a lot more that goes on with the Standard Model — its physical be-

haviours, its mathematical properties and potential extensions (typically known as Beyond

the Standard Model theories). We won’t have time to go through all of this in detail but

do refer to [46, 47] or for a wonderful set of lectures note [48].
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14 Grand Unified Theories

Having clarified what the Standard Model is, let us have a look at what Grand Unified

Theories are. The idea of Grand Unified Theories is to propose an underlying gauge group

which contains GSM = SU(3) × SU(2) × U(1) as a subgroup. The GGUT must hence be

at least rank 4, and must contain:

GGUT ⊃ GSM = SU(3)c × SU(2)L × U(1)Y (14.1)

The motivation comes from the unification of the gauge couplings into a single one. Con-

sider the one-loop renormalisation equation for gauge couplings.

1

αa(Q2)
=

1

αa(M2)
+
ba
4π

log
M2

Q2
(14.2)

with

b = −11

3
N +

2

3
C(R)nf +

1

3
C(R)ns (14.3)

For the Standard Model this isb1b2
b3

 =

 0

−22
3

−11

+
4

3
Ngen

1

1

1

+NHiggs

 1
10
1
6

0

 (14.4)

where Ngen and NHiggs is the number of generations and Higgs respectively. We can

look at the evolution of the of the couplings. For non-SUSY (supersymmetric) one-loop

renormalisations, the couplings do not match precisely together at high energies. However,

for MSSM models, the couplings exactly match - the gauge couplings join together to

become one single gauge coupling at some energy scale ΛGUT . This is what we are really

considering when we talk about Grand Unified Theories - these are supersymmetric theories

that represent the “unified” theory when the gauge couplings of QCD and EW join together

at high energies.

Figure 14.1: The evolution of the inverse couplings αi with respect to the logarithmic

energy scale logQ. Figure taken from [49].
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We in addition have to assume that there are no further relevant degrees of freedom in the

intermediate scales. This is the so-called desert-hypothesis. We note that the full GUT

multiplets do not modify the running of the relative gauge couplings at one-loop accuracy,

so their introduction does not spoil the unification of couplings. Here we consider two

prominent GUT groups - SU(5) and SO(10).

Working in progress: Updates on GUT theories.

14.1 SU(5) GUT Group

SU(5) is the unique compact simple Lie group of rank 4 admitting complex representations.

It contains GSM as a maximal subgroup. Let us look at some properties of this GUT group.

Properties of SU(5) GUT:

1. The number of gauge bosons is 52 − 1 = 24. There are 12 Standard Model and 12

extra gauge bosons labelled (X±
r , Y

±
r ) transforming as SU(2)L doublets and SU(3)c

triplets.

2. The abelian subgroup commuting with the generators of SU(3)× SU(2) is

T24 =

√
3

5


−1

3

−1
3

−1
3

1
2

1
2

 =

√
3

5

Y

2
(14.5)

3. Each quark-lepton generation fits nicely in the reducible representation 5̄⊕ 10. The

generators are:

TA =

(
1
2λA 0

0 0

)
(14.6)

for A = 1, ..., 8 and

TA =

(
0 0

0 1
2σA−20

)
(14.7)

for A = 21, 22, 23. The generators labelled A9, ..., 20 correspond to the SU(5)/GSM

generators. The explicit embedding is given by

5̄ =


dc1
dc2
dc3
e−

νe

 (14.8)

and
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10 =


0 uc3 u

c
2 u1 d1

0 uc1 u2 d2
0 u3 d3

0 e+

0

 (14.9)

where dc = D1
R, (νe, e

−) = L1, uc = U1
R, (u, d) = Q1

L, e
+ = E1

R. This assignment is

free of anomalies.

4. The fermionic part of the Lagrangian is

Lf = 5̄†α(iσ̄µD
µ) β

α 5̄β +
1

2
10αβ†(iσ̄µD

µ)αβγδ 10
γδ (14.10)

where Dµ = ∂µ + ig5TAA
µ
A.

5. To break SU(5) to the Standard Model spontaneously we add the scalar field “GUT-

Higgs” transforming in the adjoint 24:

LΣ = tr(DµΣ)
2−tr

(
Σ2 −M2

G

)
−(λH†ΣH+ λ̄H̄ΣH̄†)−m2

HH
†H−m2

H̄H̄
†H̄ (14.11)

Under SU(5) this transforms as:

Σ 7→ UΣU † (14.12)

and acquires a large VEV

⟨Σ⟩ =


2

2

2

−3
−3

 v (14.13)

so the X,Y gauge masses M2
X,Y ≃ αGUT v

2.

The SU(5) GUT theory has many implications65:

1. Charge Quantisation: trQEM = 0 since QEM ∈ SU(5) so

Qdc = −
1

3
Qe− (14.14)

2. Gauge Coupling Relation: Because of the unification of gauge couplings we obtain

relations between couplings. For example, we get:

g21 =
3

5
g22 (14.15)

65I am too lazy to use the Feynman diagram package, might update this later please forgive me...
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3. Fermionic Mass Relations: SU(5) relates Yukawa couplings of d and e−, giving

ms

md
=
mµ

me
(14.16)

This is obviously incompatible (you can check this) with the observed values. Georgi

and Jarlskog [50] used SU(5) Clebschs to fix this in an ingenious way - you can find

out more in [49].

4. Nucleon Decay: X and Y gauge bosons allows baryon number violating decay modes,

for example: p→ π0e+.

u

u

d

Y

e+

d̄

d

π0

p

Figure 14.2: Feynman diagram of the decay p→ π0e+.

This is suppressed by the large MY mass. The simplest SU(5) GUT is therefore

excluded as

τp→π0e+ ≃ 4× 1029±.7years < τp→π0e+,bound = 6.6× 1033years . (14.17)

A detailed calculation can be found in [49].

14.2 SO(10) GUT Group

The SO(10) is one of the two rank-5 compact simple Lie groups admitting complex rep-

resentations. One family of Standard Model quarks and leptons fits nicely in the irrep

16:

ψ16 = (νe u1 u2 u3; e
− d1 d2 d3; d

c
3 d

c
2 d

c
1 e

+; uc3 u
c
2 u

c
1νR) (14.18)

including the right-handed neutrino. SO(10) in fact contains SU(5)× U(1) as a maximal

subgroup, with the splitting (which you computed last sheet)

45→ 24⊕ 10⊕ 1̄0⊕ 1 (14.19)

Breaking of the SO(10) can proceed in many steps, one of them being, for example:

SO(10)→ SU(5)× U(1)→ GSM (14.20)
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This requires adjoint scalars Φ45 and also extra scalars ϕ16 in the 16 irrep. The minimal

embedding of the electroweak Higgs doublet is in a multiplet of scalars H10 in 10. Since

10→ 5⊕ 5̄ (14.21)

which gives (Hu, Hd), the Yukawa terms are

L = Y ijψ̄i
16ψ

j
16H10 + h.c. (14.22)

so we have unification of Yukawa couplings at the GUT scale. Of course, this is not really

physical as this implies that there are no CKM mixings. One can consider improved models

in Georgi [51].
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15 The sequel: AQFT

We are not done - in fact, this is only the beginning. In fact, there is a lot more to

symmetries, Lie algebras and physics. This course is just the teaser to let you peek at

that wonderful mystery land of theoretical and mathematical physics. There are many,

many more things to chat about, such as affine Lie algebras, gauge bundles, axions, string

theory...

You are lucky though. The natural sequel to this course (and the culmination of the QFT

course together with all the knowledge you have learnt so far) in the Advanced Quantum

Field Theory course in Hilary Term. In particular, you will encounter three main ideas:

1. Functional methods in QFT. There is of course, a similar formulation of QFT

as the path integral formulation of quantum mechanics. The path integral gives

one access to information that cannot be accessed from the perturbative Hamilto-

nian formulation of QFT, such as the theory of anomalies which are fundamental in

understanding low-energy effective field theories of high energy theories.

2. Renormalisation. This is a huge topic (and a big mess) that I have completely

skipped in these set of notes 66. Renormalisation in QFT typically covers two main

ideas - regularisation, the idea of removing infinities by introducing cut-offs in a

theory, and renormalisation, the idea of removing dependencies on the cut-offs you

have introduced in regularisation to compute physical quantities. The actual theory

takes about an entire lecture course to explain (and possibly a whole lifetime to really

comprehend) but I will leave it here 67.

3. Gauge theories. Gauge theory is an extremely difficult topic. One can simply view

gauges as redundacies and this is in fact a very useful way of thinking about it in the

context of quantum field theory, but the ‘correct’ mathematical definition should be

a connection on a gauge bundle. This probably takes about two lecture courses to

explain 68, so I will just leave it for a later date or a later note.

There is way too much to do and learn but you will survive. The list of things you would

want to learn just grows. I, for now, should stop typing this and return to actual research

to learn more...

66But, who knows, maybe I will have something on the side to supplement this supplementary note.
67If you are interested, the best sets of notes I have found (on top of canonical QFT textbooks) are

[52, 53].
68One on the physics notion and how you encounter and deal with them in QFTs, one on the mathematical

formulation (connection theory) and then one to wrap everything together.
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A Module Theory

Here are some more relevant results from elementary module theory.

Definition A.1. An R-module M is finitely-generated if every element of M can be

written as an R0-linear combination of elements of some finite subset of M .

Note however that for modules, the minimal generating sets for a given module may have

different numbers of elements. For the following fix R a ring and M a module.

Definition A.2. Let N ⊂ M . N is a submodule of M if rn ∈ N for all r ∈ R and

n ∈ N .

Every module has at least two submodules, itself R and the zero module {0}. These are

sometimes called trivial submodules.

Definition A.3. A module having no non-trivial submodules is called simple.

Definition A.4. The quotient R-module M/N is defined with the structure r(m+N) =

rm+N .

We can of course also compose modules.

Definition A.5. The direct sum of two modules N1 ⊕N2 is the R-module

N1 +N2 = {x+ y |x ∈ N1, y ∈ N2} , (A.1)

with N1 ∩N2 = 0. The direct product is the R-module with structure,

r(m,n) = (rm, rn) . (A.2)

Definition A.6. A composition series of an R-module M is a descending series of

submodules ofM which terminates in the zero submodule in which each successive quotient

is a simple module.

Definition A.7. Suppose M and N are R-modules and φ :M → N is a group homomor-

phism. Then φ is an R-module homomorphism if φ(rm) = rφ(m). The kernel of φ,

kerϕ ⊂ M is the set of elements of M mapped under φ to the additive identity of N , the

image of φ is a submodule of N , imφ ⊂ N . The cokernel is a submodule of N defined

as coker(φ) = N/ imφ.

With the above definitions we can restate Schur’s Lemma in module form.

Lemma A.1 (Schur’s Lemma). Any non-zero homomorphism between simple R-modules

is an isomorphism.

Proof. Let M and N be simple R-modules and φ : M → N a R-module homomorphism.

Since kerφ is a submodule of M and imφ is a submodule of N , if φ is a non-zero map,

then kerφ = 0 and imφ = N so φ is an isomorphism.
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Definition A.8. The homomorphism-module HomR(M,N) is the set of all R-module

homomorphisms from M to N .

Let us define two things from ring theory for our purposes.

Definition A.9. The opposite ring Rop is the abelian group R with the multiplication

rule of R reversed, i.e. a · b = ba for all a, b ∈ R.

Definition A.10. A module M is an (R,S)-bimodule if we have,

r(ms) = (rm)s , (A.3)

for every r ∈ R, s ∈ S and m ∈M .

Tensor products are defined formally using bimodules.

Definition A.11. Let M be an (R,S)-bimodule, U be an R-module and N be an S-

module. A set map f : M × N → U is balanced if for mi ∈ M , ni ∈ N , r ∈ R and

s ∈ S:

• f(m1 +m2, n) = f(m1, n) + f(m2, n).

• f(m,n1 + n1) = f(m,n1) + f(m,n2).

• f(ms, n) = f(m, sn).

• f(rm, n) = rf(m,n).

A tensor product over S of M and N , M ⊗S N is one equipped with a balance map,

η : M × N → M ⊗S N , with the following universal property. If U is an R-module, and

f : M × N → U is a balanced map, then there is a unique R-module homomorphism

α :M ⊗S N → U such that f = α ◦ η.

It can seen that we have the following proposition.

Proposition A.1. Let R be a ring with unit and let M be an R-module. Then M and

R⊗R M are isomorphic R-modules.

Proof. The map f : R ×M → M is balanced and induces an R-module homomorphism,

α : R ⊗R M → M from f(r,m) = rm to α(r ⊗m) = rm. α is invertible with α−1 : m 7→
1⊗m.

A.1 Semi-simple and simple modules

Recall that simple modules are the modules with only the trivial submodules, namely itself

and the zero module {0}. These are the building-blocks of more complicated module. In

particular, similar to Lie algebras, we can define,

Definition A.12. A semisimplemodule is module that is a direct sum of simple modules.

Then we have the following statement.
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Lemma A.2. The following statements are equivalent about an A-module M .

1. Any submodules M is a direct summand of M .

2. M is semisimple.

3. M is a sum of simple submodules.

Proof. The only non-trivial statement is implying (1) from (3). To see this, let N ⊂M be a

submodule and V a submodule that is maximal among all submodules ofM that intersects

M trivially. Suppose there is some simple submodule S ofM that is not contained in N+V .

Since S ∩ (N + V ) = 0 by simplicity of S, we can let n ∈ N ∩ (V + S), but s = n− v = 0

implies n = v which means N ∩ (V + S) and it contradicts the maximality of V . So

M = N ⊕ V since N ∩ V = 0.

Lemma A.3. Submodules and quotient modules of semisimple modules are semisimple.

Proof. Use the property of semi-simpleness of the components of the module M , M =∑
i Si, with M/N = η(M) =

∑
i η(Si) and each Si is isomorphic with a quotient module

of Si and is therefore zero or simple.

Definition A.13. The algebra A is semisimple if all non-zero A-modules are semisimple.

Now we have the following basic results on semisimple algebras.

Lemma A.4. The algebra A is semisimple iff the A-module A is semisimple.

Proof. Suppose M is an A-module generated by {m1, . . . ,mr}. Let Ar denote the direct

sum of r copies of A. Define a map f : Ar →M , (a1, . . . , ar) 7→ a1m1+ · · ·+armr which is

an A-module epimorphism. So M is isomorphic with a quotient module of the semisimple

module Ar so it is therefore semisimple by Lemma A.3. The converse is trivial.

Proposition A.2. Let A be a semisimple algebra and suppose as A-modules A ∼= S1 ⊕
· · · ⊕ Sr with Si simple submodules of A. Then any simple A-module is isomorphic with

some Si.

Proof. Define an A-module homomorphism φ : A→ S where S is a simple submodule of A

by φ(a) = as for some non-zero s ∈ S. φ is surjective since S is simple. For each i, we let

φi : Si → S be the restriction of φ|Si . Then φi must be non-zero for some i so φi : Si → S

must be an isomorphism by Schur’s Lemma.

Proposition A.3. Suppose that A is a semisimple algebra, and let S1, . . . , Sr is a collection

of simple A-modules such that every simple A-module is isomorphic with exactly one Si.

Suppose M is an A-module, and write M ∼=
⊕

i niSi for some non-negative integers ni.

Then the ni are uniquely defined.

Proof. There is a composition series of
⊕

i niSi having n1+ · · ·+nr terms, in which each Si
appears ni times as a composition factor. The result then follows from the Jordan-Hölder

theorem for modules.
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The Jordan-Hölder theorem for modules states the following. If there are two composition

series for the same module M , then the two composition series of M must be of the same

length and are equivalent.

A.2 Direct sums

Here are some additional facts about direct sums of modules which might be useful in the

main text. In this section we fix Ai, i = 1, . . . , r to be algebras.

Definition A.14. The external direct sum of the Ai is the algebra A whose underlying

set is the Cartesian product of the Ai with addition, multiplication and scalar multiplication

operations defined component-wise. We write,

A = A1 ⊕ · · · ⊕Ar . (A.4)

For M an Ai-module, we can define an A-module as simply acting the relevant component

ai on m ∈ M . The simpleness of M as an Ai-module then translates to an A-module.

Clearly, if B is an algebra with ideals Bi and B =
⊕

iBi as vector spaces. Then B is

isomorphic with the external direct sum
⊕

iBi by the map,

b = b1 + · · ·+ br 7→ (b1, . . . , br) . (A.5)

Definition A.15. The B defined above is the internal direct sum as algebras of the Bi.

Note that since Bi and Bj are ideals, we have,

(b1 + · · ·+ br) · (b′1 + · · ·+ b′r) = b1b
′
1 + · · ·+ brb

′
r . (A.6)

Lemma A.5. Let B = B1⊕· · ·⊕Bn be a direct sum of algebras. Then the two-sided ideals

of B are exactly the sets of the form J1 ⊕ · · · ⊕ Jn, where Ji is a two-sided ideal of Bi for

each i.

Proof. Let J be a two-sided ideal of B and let Ji = J ∩Bi for each i, clearly,
⊕n

i=1 Ji ⊂ J .
Let b ∈ J then b = b1 + · · · + bn for bi ∈ Bi for each i. We fix some i and let ei be the

element of B with the only non-zero entry the identity of Bi. Then bi = bei ∈ J ∩Bi = Ji.

Therefore, b ∈
⊕n

i=1 Ji. The converse is straightforward.
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