

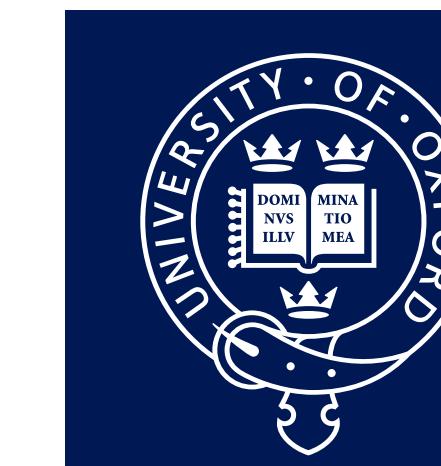
Croucher Foundation
裘 槩 基 金 會

Heterotic Line Bundle Standard Models and Heterotic Flux Moduli Stabilisation

**The gift, the curse, the dream
Lucas Leung**

**based on arXiv:2505.XXXXX with Andrei Constantin, Andre Lukas and Luca A. Nutricati
and arXiv:2507.XXXXX with Andrei Constantin and Andre Lukas**

Oxford Dalitz Seminar - 15th May 2025



**UNIVERSITY OF
OXFORD**

Phenomenological Questions

Fermion Masses and Mixings

Why do Yukawa matrices take these values?

Why do we have mass hierarchies?

Dark matter

What is dark matter comprised of?

Hierarchy Problem

Why is the Higgs mass/ electroweak-scale suppressed?

Strong CP Problem

Why do we have a θ -vacua?

Phenomenological Questions

Fermion Masses and Mixings

Why do Yukawa matrices take these values?

Why do we have mass hierarchies?

Hierarchy Problem

Why is the Higgs mass/ electroweak-scale suppressed?

Dark matter

What is dark matter comprised of?

Strong CP Problem

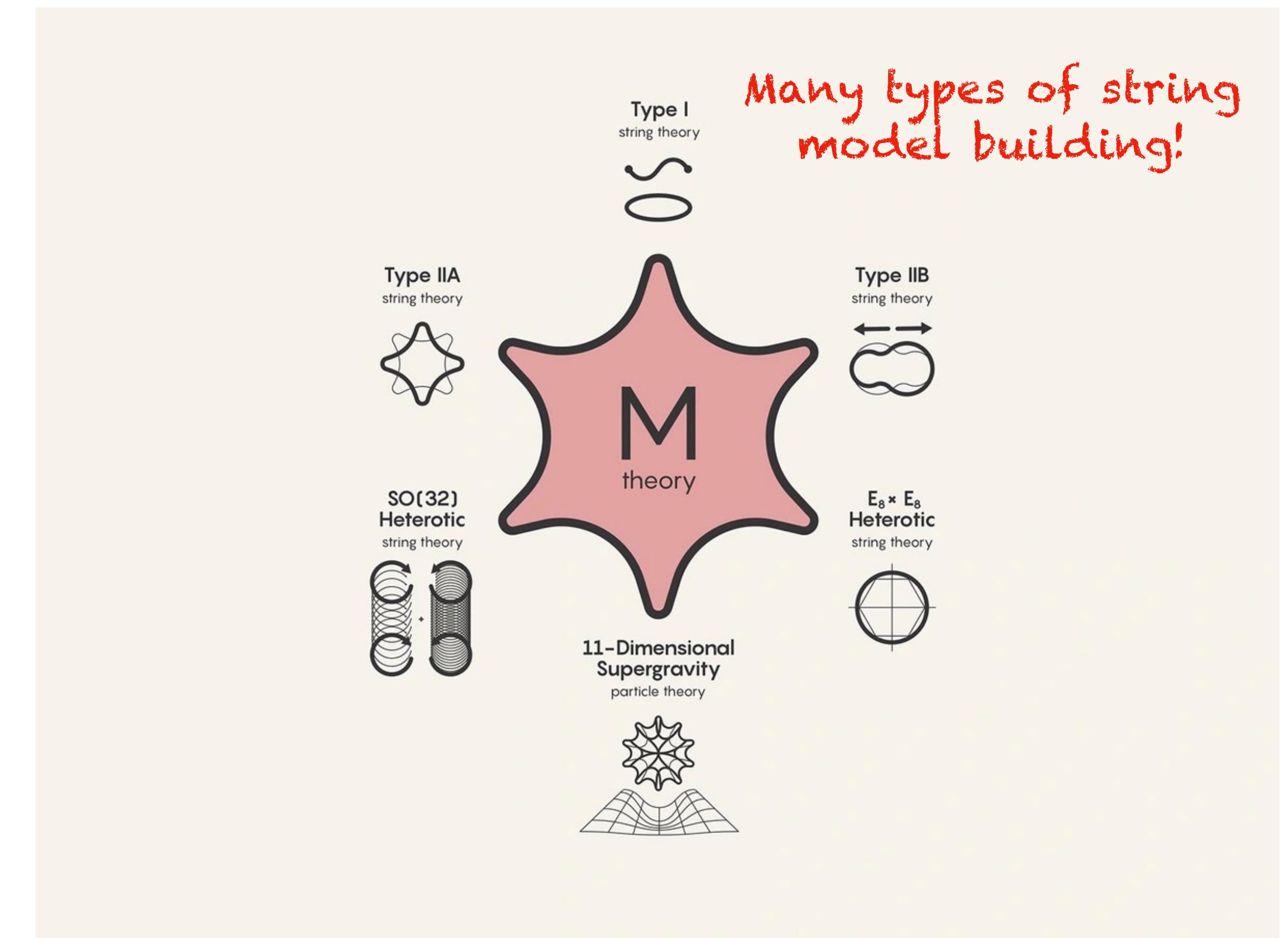
Why do we have a θ -vacua?

The optimistic HEP's view

How do I unify gravity with SM?

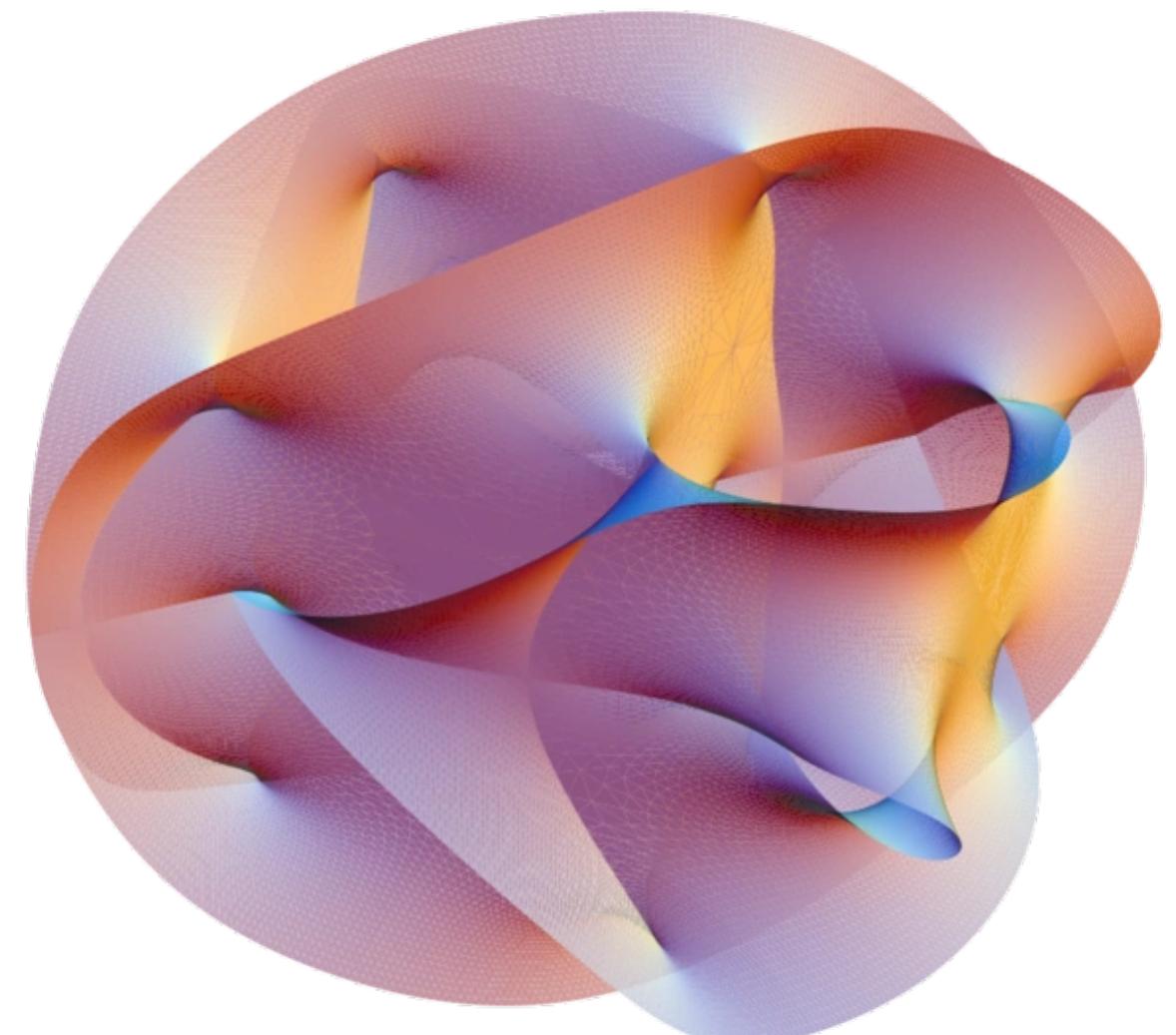
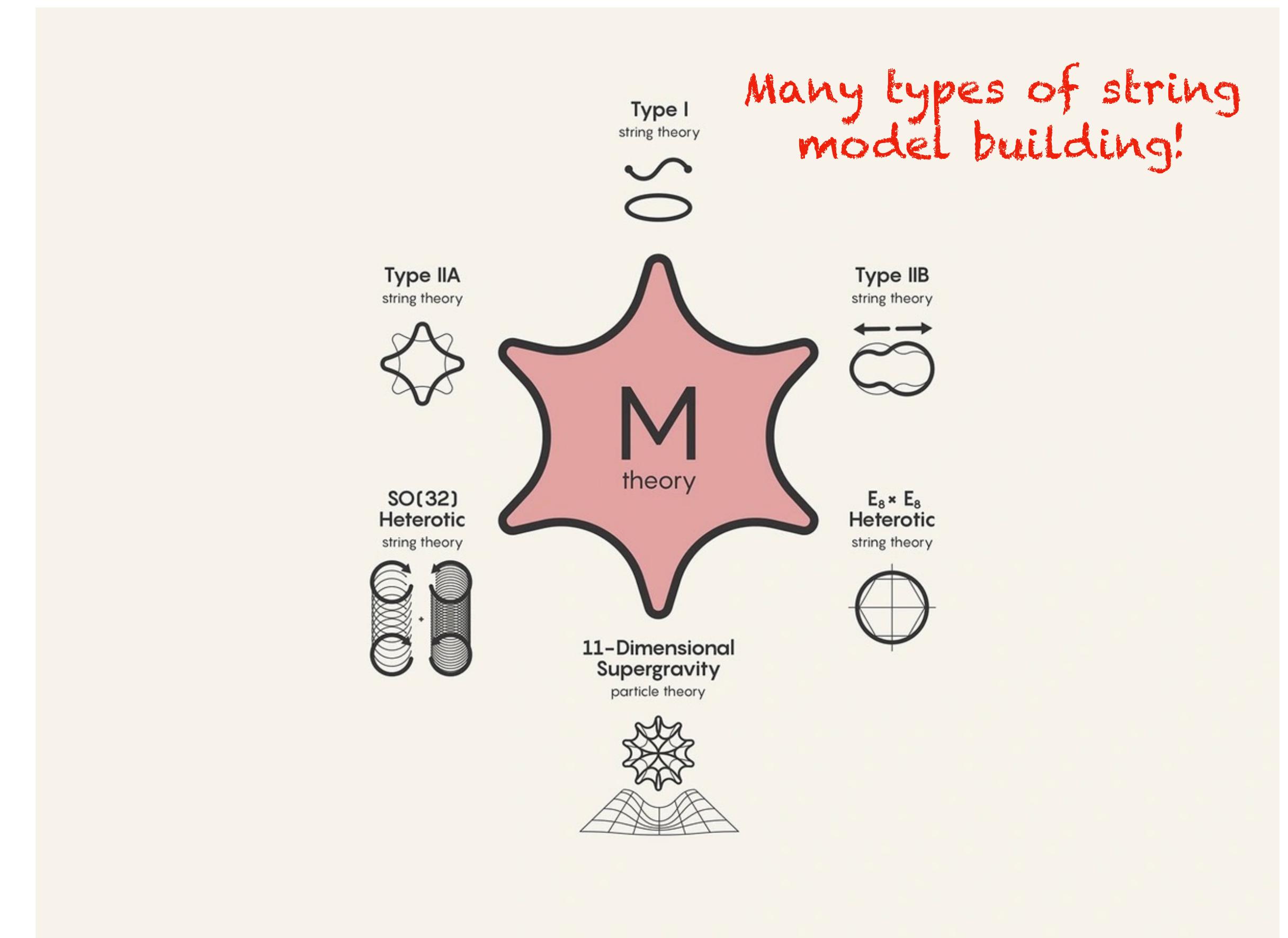
String Model Building

- most well-studied QG theory
- lots of dualities
- maybe best theory to understand HEP
- can get pheno properties!



String Model Building

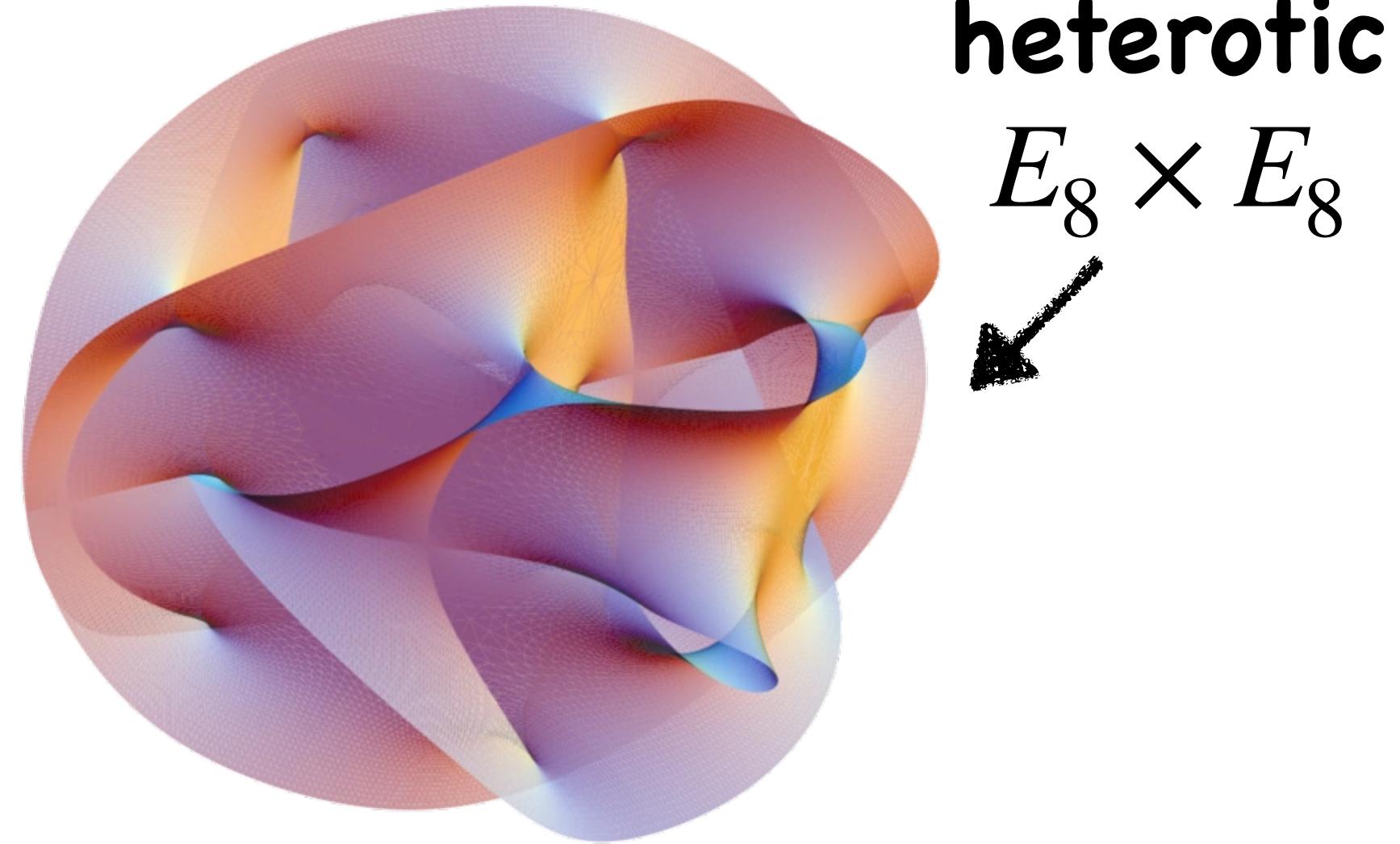
- most well-studied QG theory
- lots of dualities
- maybe best theory to understand HEP
- can get pheno properties!



Want to focus on heterotic
 $E_8 \times E_8$ on smooth CYs

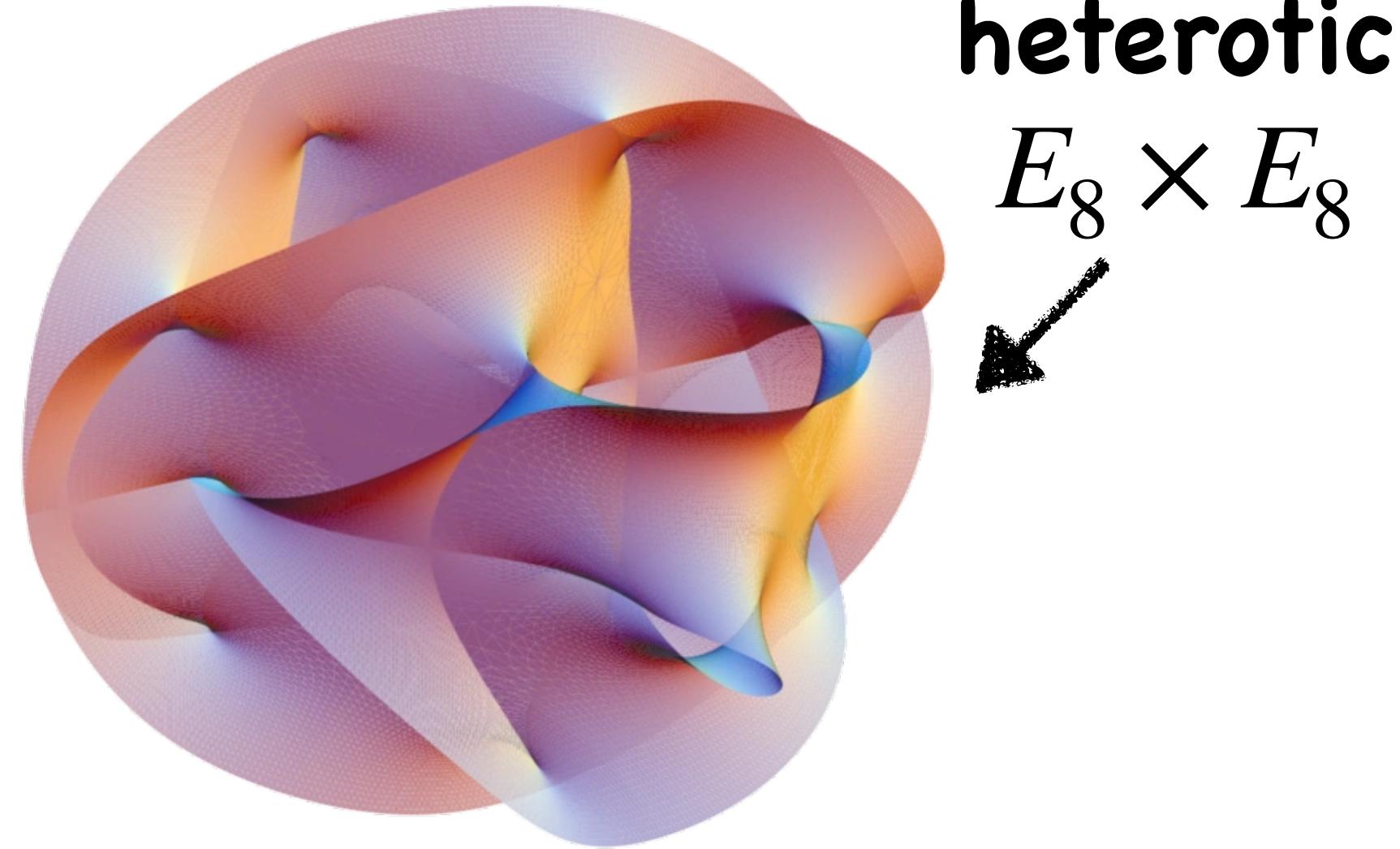
String Model Building

Want to focus on heterotic
 $E_8 \times E_8$ on smooth CYs.



String Model Building

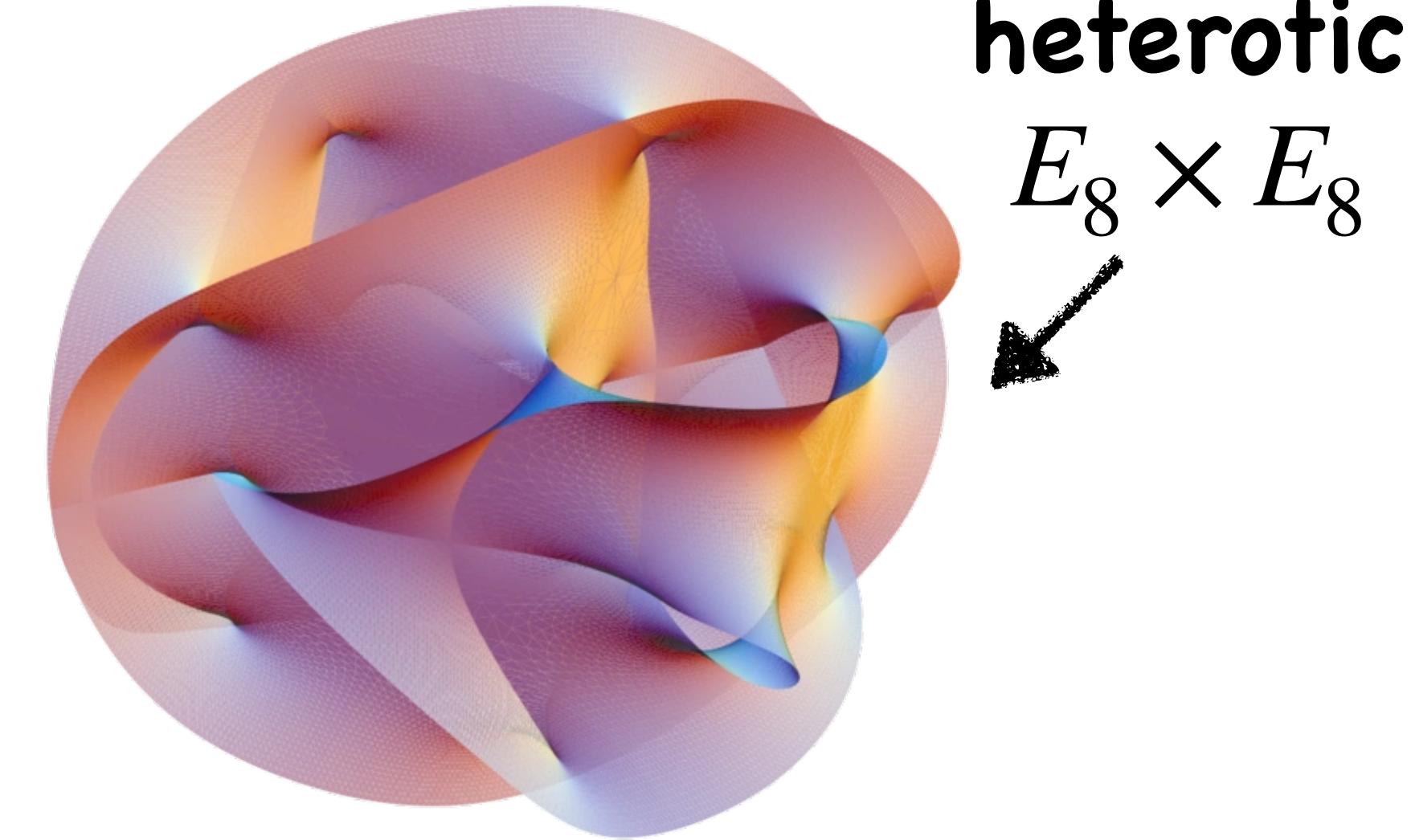
Want to focus on heterotic
 $E_8 \times E_8$ on smooth CYs.



Advantages

- Natural embedding of Standard Model gauge group into E_8
- Have lists of smooth CYs - good understanding
- Models with no exotic matter can be found

String Model Building



Want to focus on heterotic
 $E_8 \times E_8$ on smooth CYs.

Advantages

- Natural embedding of Standard Model gauge group into E_8
- Have lists of smooth CYs - good understanding
- Models with no exotic matter can be found

Difficulties

- Need vector bundle - mathematically difficult
- CY metric, HYM connection not known - analytical calculations impossible
- no natural hierarchy of localisation of gauge degrees of freedom along the gravitational branes

Content

- Heterotic Model Building and Line Bundle Standard Models
- Phenomenology of Heterotic Line Bundle Standard Models
- An Example Model
- Moduli Stabilisation - Strings and Heterotic
- Heterotic Flux Stabilisation - Generalities
- Example Cases and General Arguments
- Conclusions

Content

- Heterotic Model Building and Line Bundle Standard Models
- Phenomenology of Heterotic Line Bundle Standard Models
- An Example Model
- Moduli Stabilisation - Strings and Heterotic
- Heterotic Flux Stabilisation - Generalities
- Example Cases and General Arguments
- Conclusions

gift

Content

- Heterotic Model Building and Line Bundle Standard Models
- Phenomenology of Heterotic Line Bundle Standard Models
- An Example Model
- Moduli Stabilisation - Strings and Heterotic
- Heterotic Flux Stabilisation - Generalities
- Example Cases and General Arguments
- Conclusions

gift

curse

Content

- Heterotic Model Building and Line Bundle Standard Models
- Phenomenology of Heterotic Line Bundle Standard Models
- An Example Model
- Moduli Stabilisation - Strings and Heterotic
- Heterotic Flux Stabilisation - Generalities
- Example Cases and General Arguments
- Conclusions

gift

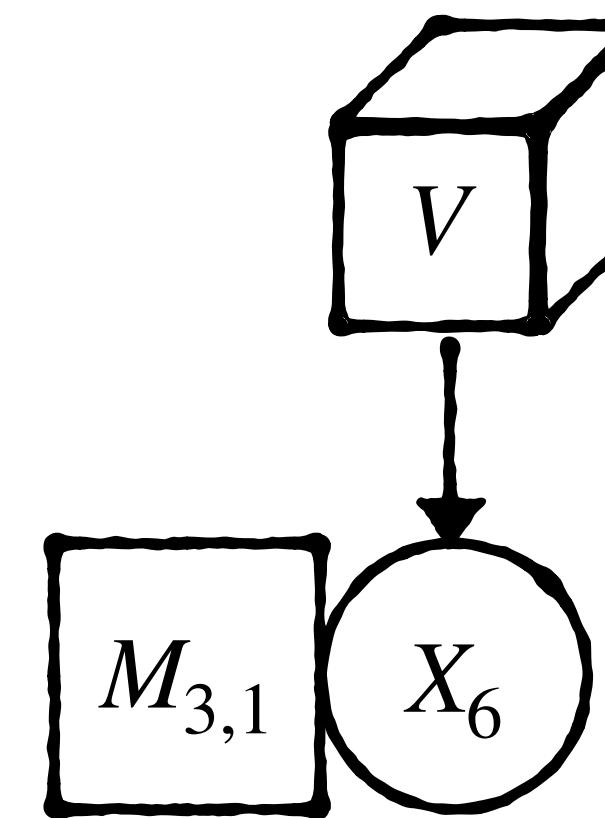
curse

dream

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

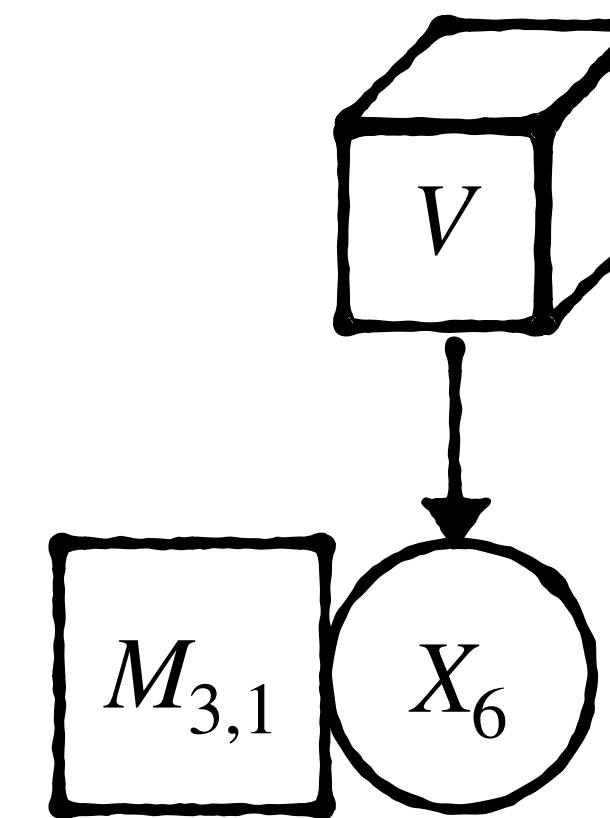
Step 2 : Wilson-line breaking

Step 3 : $U(1)$ symmetries

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

We work with **Complete Intersection Calabi-Yau manifolds (CICYs)**:

These are manifolds that are hypersurfaces in projective spaces.

Step 1 : GUT Gauge Group

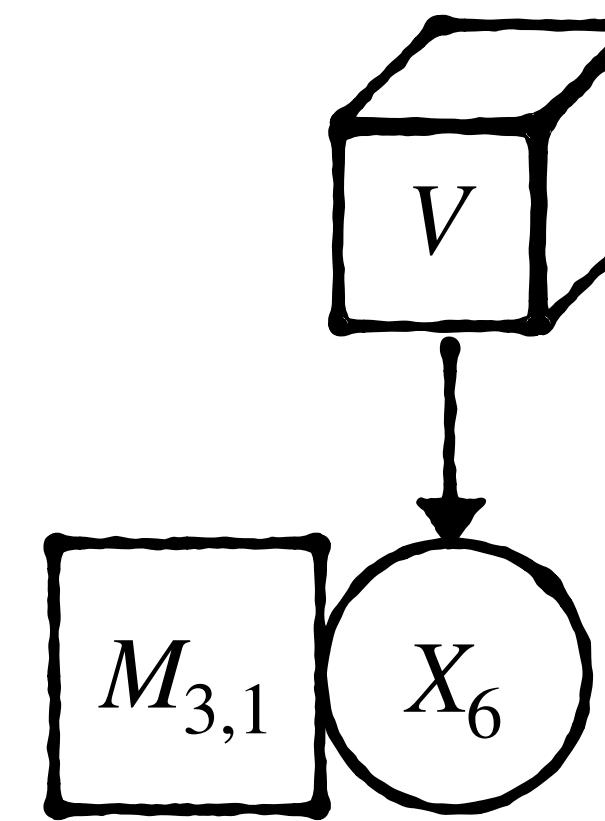
Step 2 : Wilson-line breaking

Step 3 : $U(1)$ symmetries

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

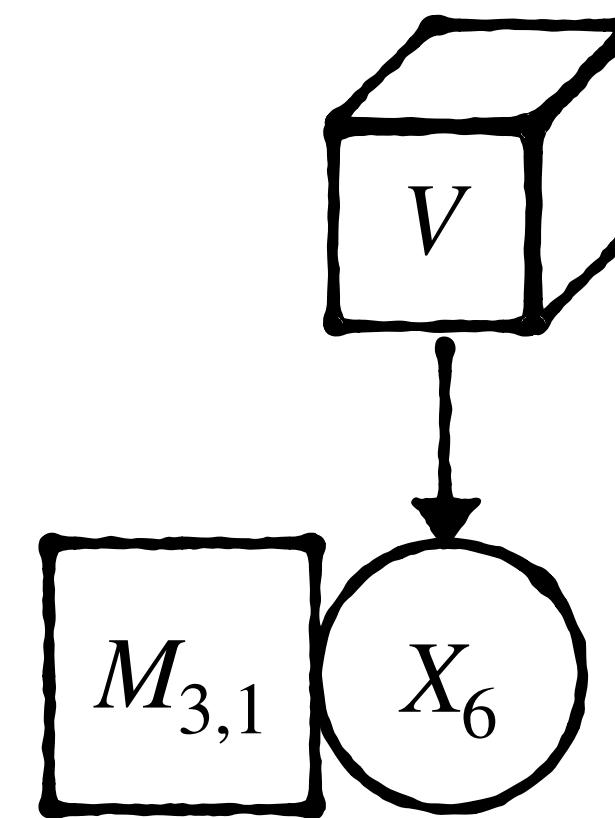
Step 2 : Wilson-line breaking

Step 3 : $U(1)$ symmetries

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets

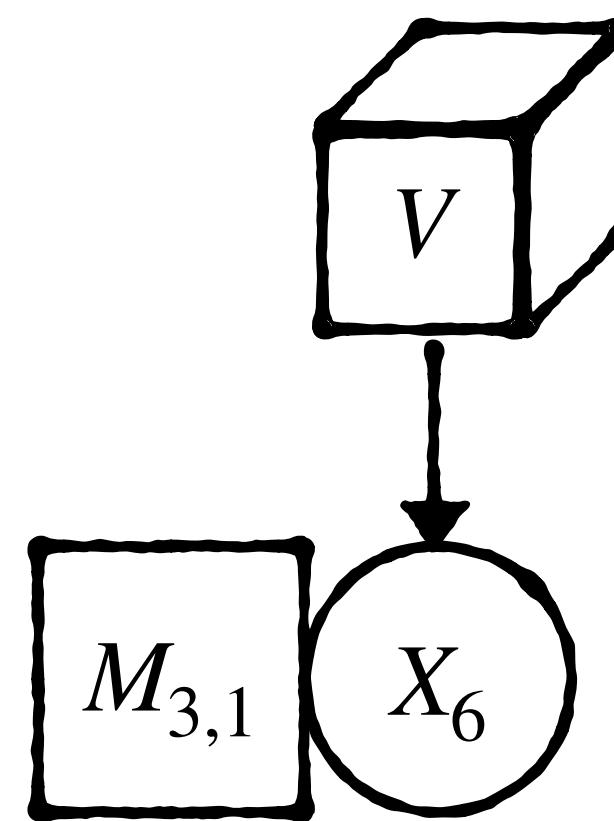


Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



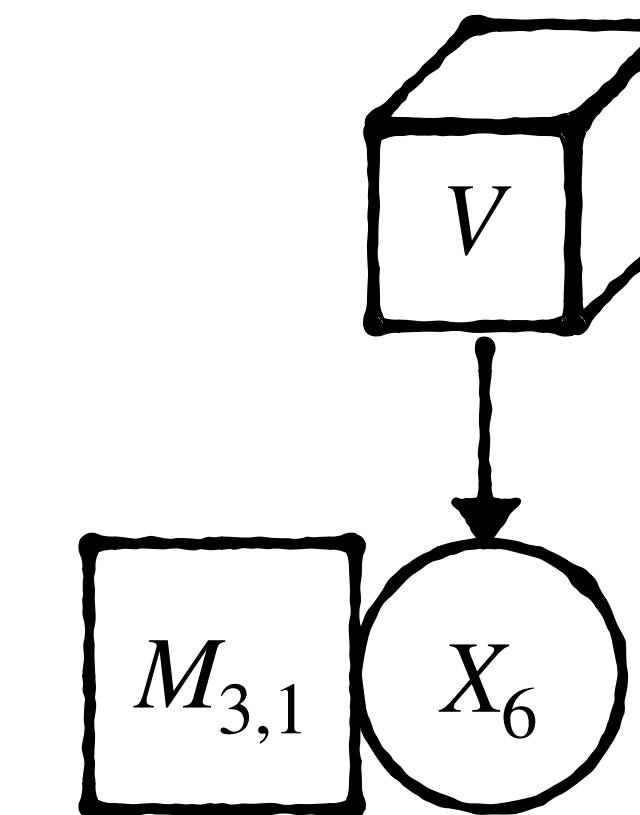
Number of families is given by index of bundle – ind V .

Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Number of families is given by index of bundle – ind V .

Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Physical Yukawa couplings come from holomorphic Yukawa couplings

$$\lambda_{IJK} \sim \int_X \nu_I \wedge \nu_J \wedge \nu_K \wedge \Omega$$

scaled by matter field metric

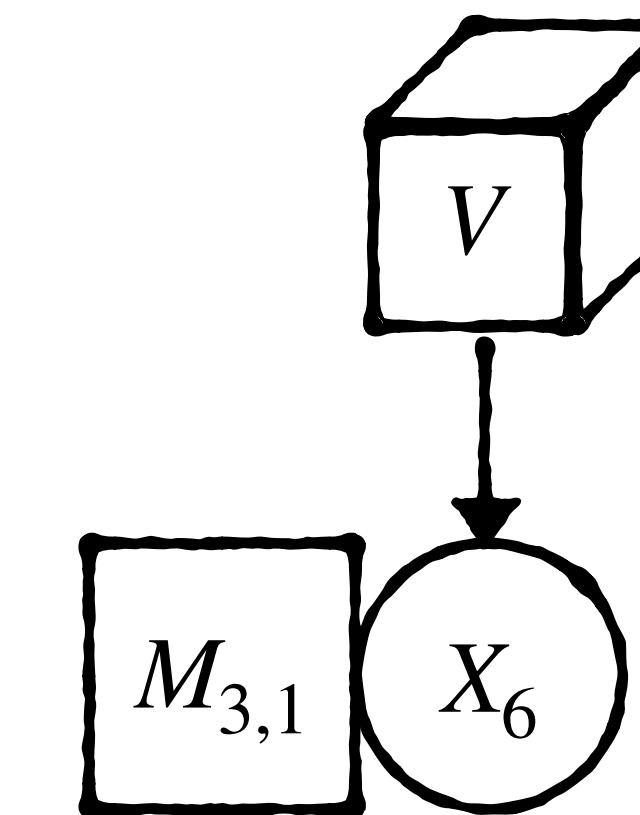
$$K_{IJ} \sim \int_X \nu_I \wedge \star \nu_J$$

Direct perturbative computation with aid of ML techniques possible! [Constantin et al. (2024)]

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Number of families is given by index of bundle – ind V .

Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Coefficient calculation - DIFFICULT:

- K_{IJ} requires knowledge of metric of X
- complicated dependence on moduli fields
- non-perturbative corrections are hard

Physical Yukawa couplings come from holomorphic Yukawa couplings

$$\lambda_{IJK} \sim \int_X \nu_I \wedge \nu_J \wedge \nu_K \wedge \Omega$$

scaled by matter field metric

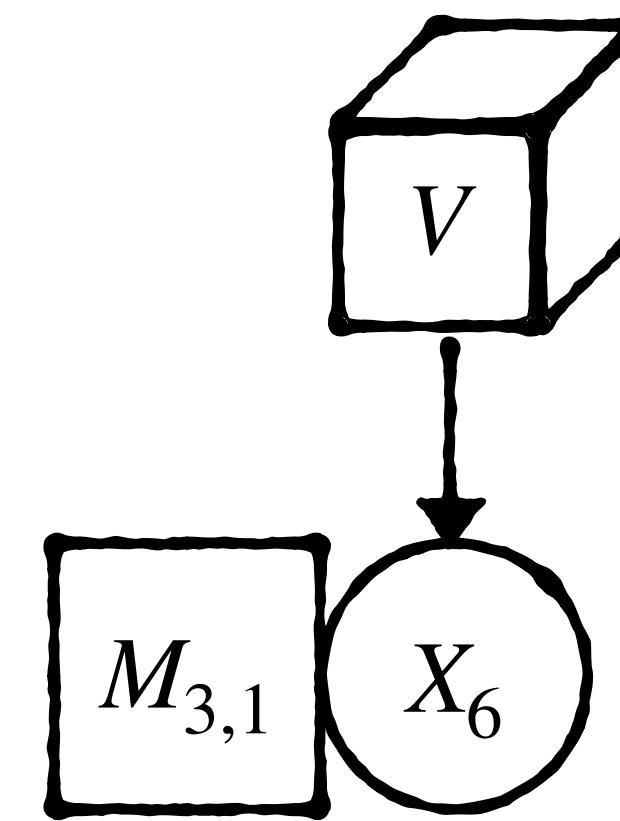
$$K_{IJ} \sim \int_X \nu_I \wedge \star \nu_J$$

Direct perturbative computation with aid of ML techniques possible! [Constantin et al. (2024)]

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets

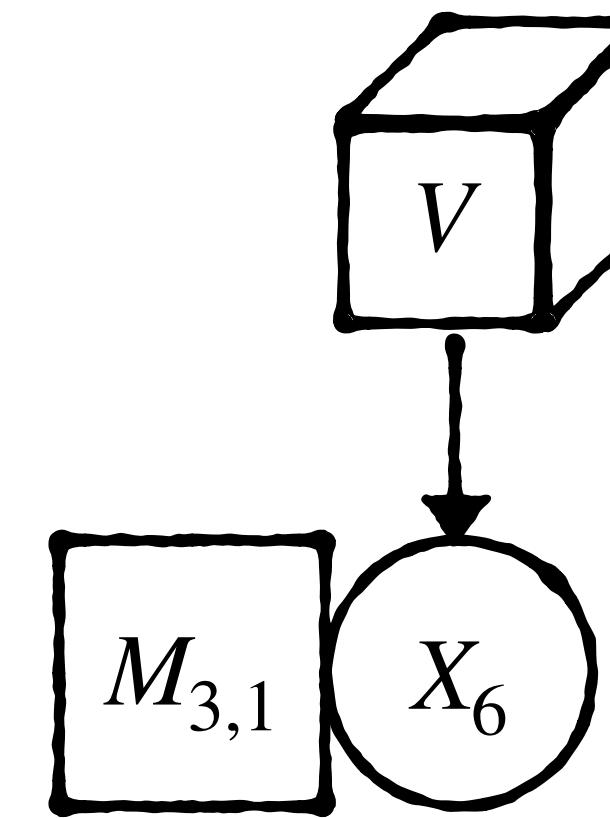


Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

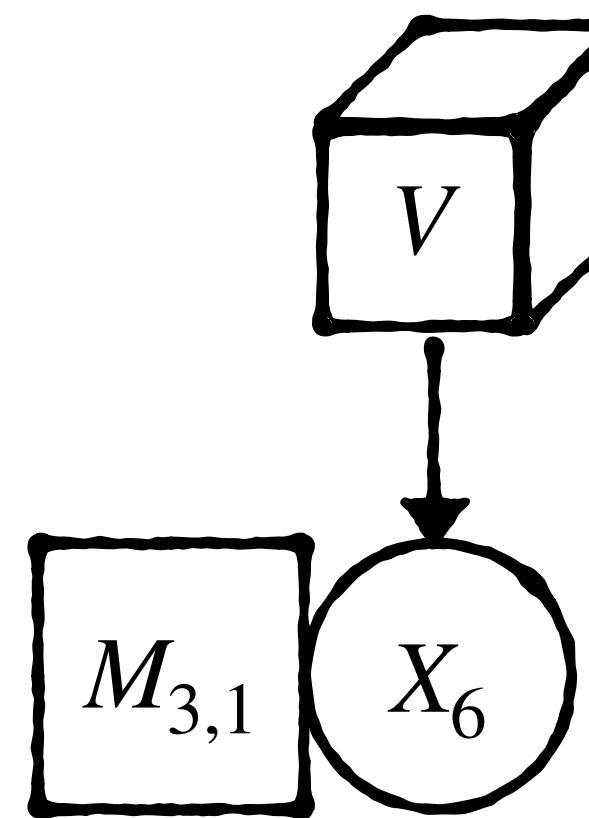
Step 2 : Wilson-line breaking

Step 3 : $U(1)$ symmetries

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Select vector bundle + Get $G_{\text{GUT}} \subset E_8$

Step 1 : GUT Gauge Group

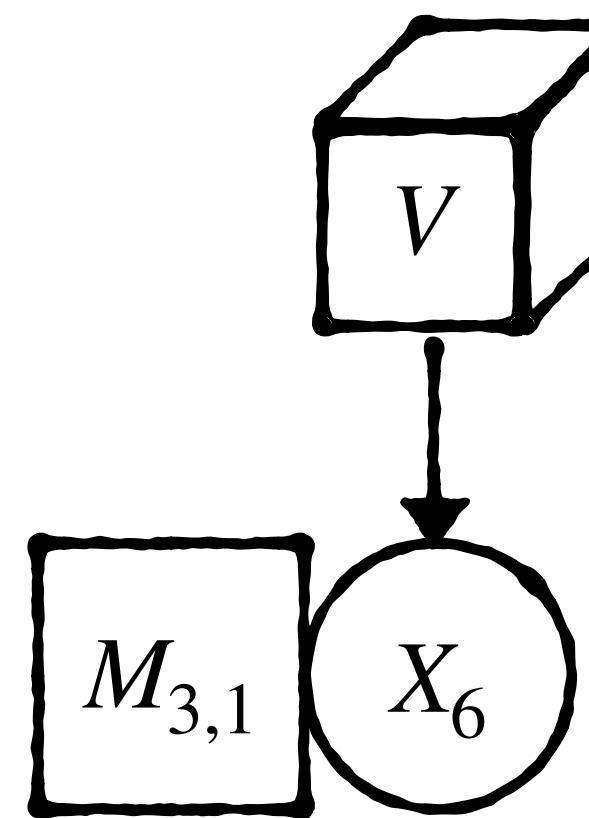
Step 2 : Wilson-line breaking

Step 3 : $U(1)$ symmetries

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Select vector bundle + Get $G_{\text{GUT}} \subset E_8$

Step 1 : GUT Gauge Group

Break G_{GUT} to G_{SM}

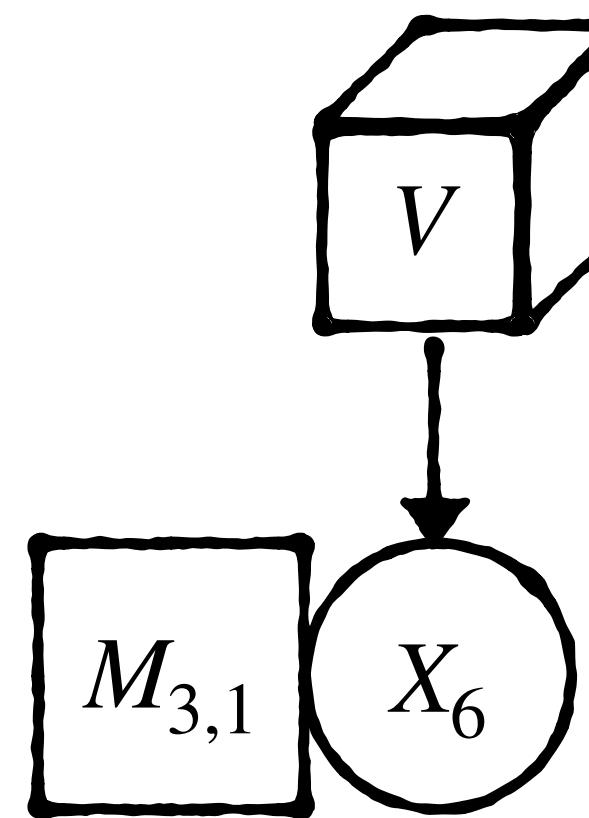
Step 2 : Wilson-line breaking

Step 3 : $U(1)$ symmetries

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets

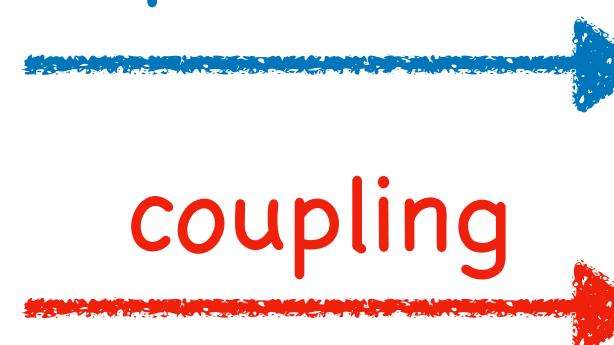


Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Select vector bundle + Get $G_{\text{GUT}} \subset E_8$

Step 1 : GUT Gauge Group

Step 2 : Wilson-line breaking

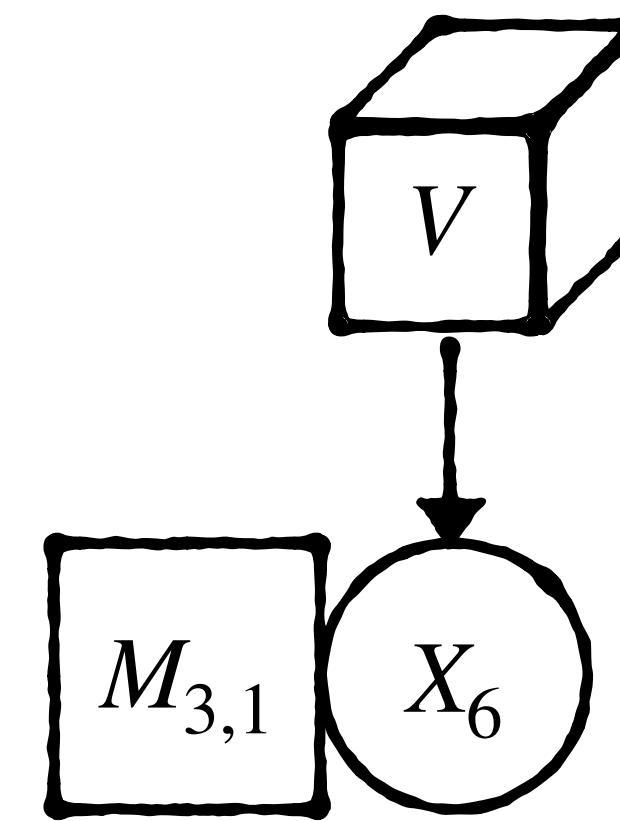


Step 3 : $U(1)$ symmetries

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets

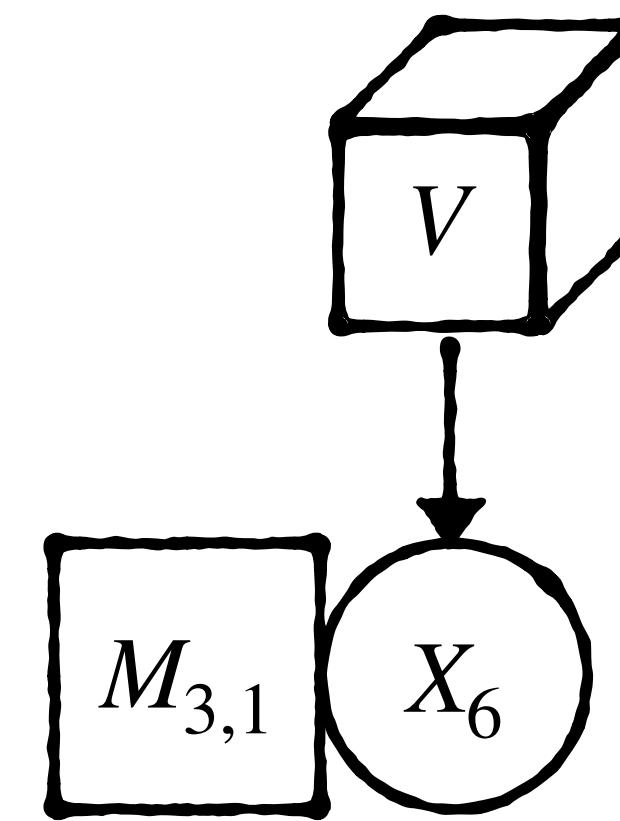


Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

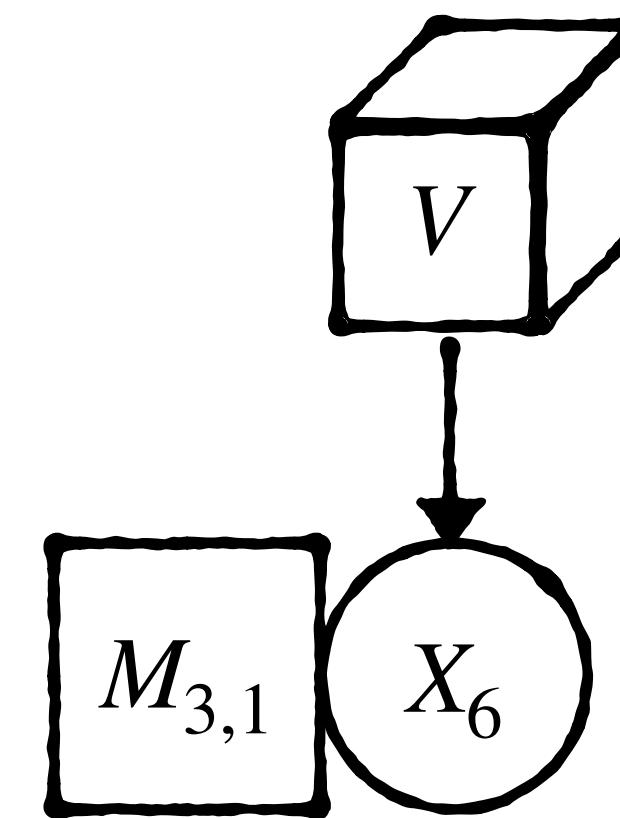
Step 1 : GUT Gauge Group

- V sum of line bundles
- $G = SU(5) \times S(U(1)^5)$

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

- V sum of line bundles
- $G = SU(5) \times S(U(1)^5)$

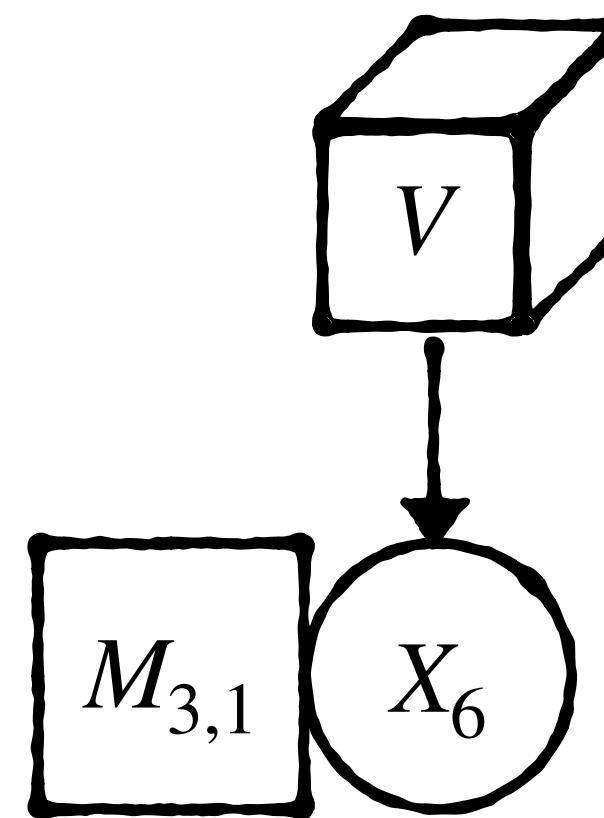
Step 2 : Wilson-line breaking

- Further break $SU(5)$ to $SU(3) \times SU(2) \times U(1)$ using a Wilson line bundle

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

- V sum of line bundles
- $G = SU(5) \times S(U(1)^5)$

Step 2 : Wilson-line breaking

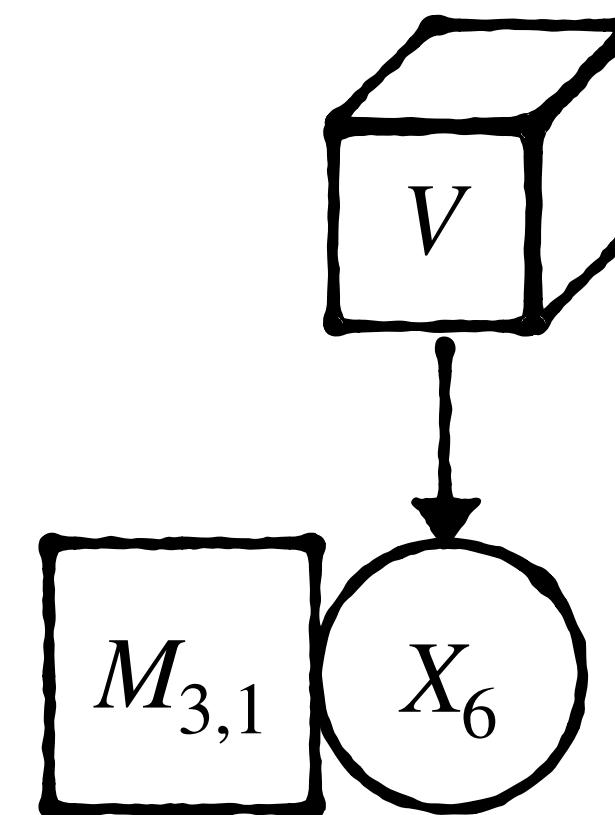
- Further break $SU(5)$ to $SU(3) \times SU(2) \times U(1)$ using a Wilson line bundle

Symbol	SM rep	SU(5) rep	Charge Pattern in \mathcal{J}	Description
Q_I	$(3, 2)_1$	$\mathbf{10}^I$	$q = e_a$	LH quarks
u_I	$(\bar{3}, 1)_{-4}$	$\mathbf{10}^I$	$q = e_a$	RH u quarks
e_I	$(3, 2)_1$	$\mathbf{10}^I$	$q = e_a$	RH electrons
d_I	$(\bar{3}, 1)_2$	$\bar{\mathbf{5}}^I$	$q = e_a + e_b$	RH d quarks
L_I	$(1, 2)_{-3}$	$\bar{\mathbf{5}}^I$	$q = e_a + e_b$	LH leptons
H_d	$(1, 2)_{-3}$	$\bar{\mathbf{5}}_H$	$q = e_a + e_b$	Down-Higgs
H_u	$(1, 2)_3$	$\mathbf{5}_H$	$q = -e_a - e_b$	Up-Higgs
ν_A	$(1, 1)_1$	$\mathbf{1}$	$q = e_a - e_b$	RH neutrinos
ϕ_A	$(1, 1)_1$	$\mathbf{1}$	$q = e_a - e_b$	Moduli singlets
$\Phi_B = e^{-T_B}$	$(1, 1)_1$	$\mathbf{1}$	k_a^B	Kähler moduli

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

- V sum of line bundles
- $G = SU(5) \times S(U(1)^5)$

Step 2 : Wilson-line breaking

- Further break $SU(5)$ to $SU(3) \times SU(2) \times U(1)$ using a Wilson line bundle

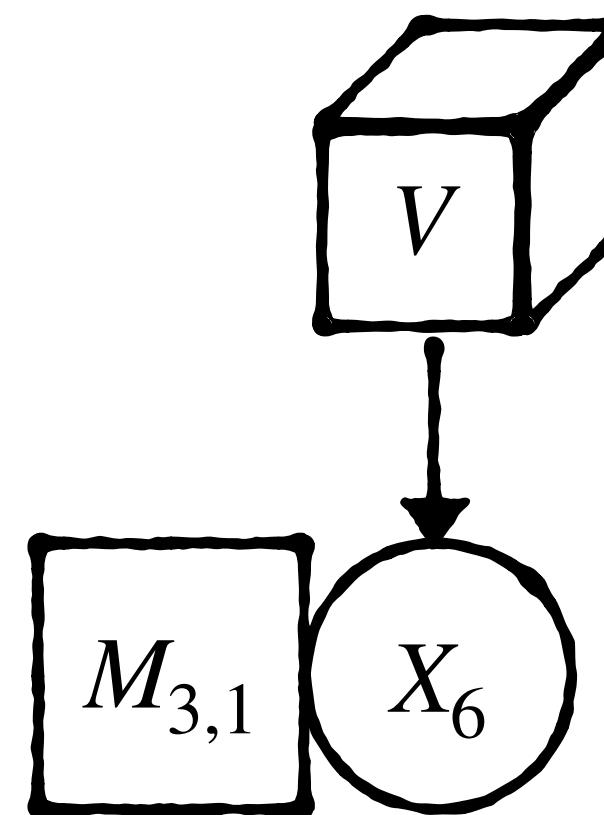
Symbol	SM rep	SU(5) rep	Charge Pattern in \mathcal{J}	Description
Q_I	$(3, 2)_1$	10^I	$q = e_a$	LH quarks
u_I	$(\bar{3}, 1)_{-4}$	10^I	$q = e_a$	RH u quarks
e_I	$(3, 2)_1$	10^I	$q = e_a$	RH electrons
d_I	$(\bar{3}, 1)_2$	$\bar{5}^I$	$q = e_a + e_b$	RH d quarks
L_I	$(1, 2)_{-3}$	$\bar{5}^I$	$q = e_a + e_b$	LH leptons
H_d	$(1, 2)_{-3}$	$\bar{5}_H$	$q = e_a + e_b$	Down-Higgs
H_u	$(1, 2)_3$	5_H	$q = -e_a - e_b$	Up-Higgs
ν_A	$(1, 1)_1$	1	$q = e_a - e_b$	RH neutrinos
ϕ_A	$(1, 1)_1$	1	$q = e_a - e_b$	Moduli singlets
$\Phi_B = e^{-T_B}$	$(1, 1)_1$	1	k_a^B	Kähler moduli

Low-energy matter field
structure: **248 of E_8**

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

- V sum of line bundles
- $G = SU(5) \times S(U(1)^5)$

Step 2 : Wilson-line breaking

- Further break $SU(5)$ to $SU(3) \times SU(2) \times U(1)$ using a Wilson line bundle

Symbol	SM rep	SU(5) rep	Charge Pattern in \mathcal{J}	Description
Q_I	$(3, 2)_1$	$\mathbf{10}^I$	$q = e_a$	LH quarks
u_I	$(\bar{3}, 1)_{-4}$	$\mathbf{10}^I$	$q = e_a$	RH u quarks
e_I	$(3, 2)_1$	$\mathbf{10}^I$	$q = e_a$	RH electrons
d_I	$(\bar{3}, 1)_2$	$\bar{\mathbf{5}}^I$	$q = e_a + e_b$	RH d quarks
L_I	$(1, 2)_{-3}$	$\bar{\mathbf{5}}^I$	$q = e_a + e_b$	LH leptons
H_d	$(1, 2)_{-3}$	$\bar{\mathbf{5}}_H$	$q = e_a + e_b$	Down-Higgs
H_u	$(1, 2)_3$	$\mathbf{5}_H$	$q = -e_a - e_b$	Up-Higgs
ν_A	$(1, 1)_1$	$\mathbf{1}$	$q = e_a - e_b$	RH neutrinos
ϕ_A	$(1, 1)_1$	$\mathbf{1}$	$q = e_a - e_b$	Moduli singlets
$\Phi_B = e^{-T_B}$	$(1, 1)_1$	$\mathbf{1}$	k_a^B	Kähler moduli

Low-energy matter field structure: **248** of E_8

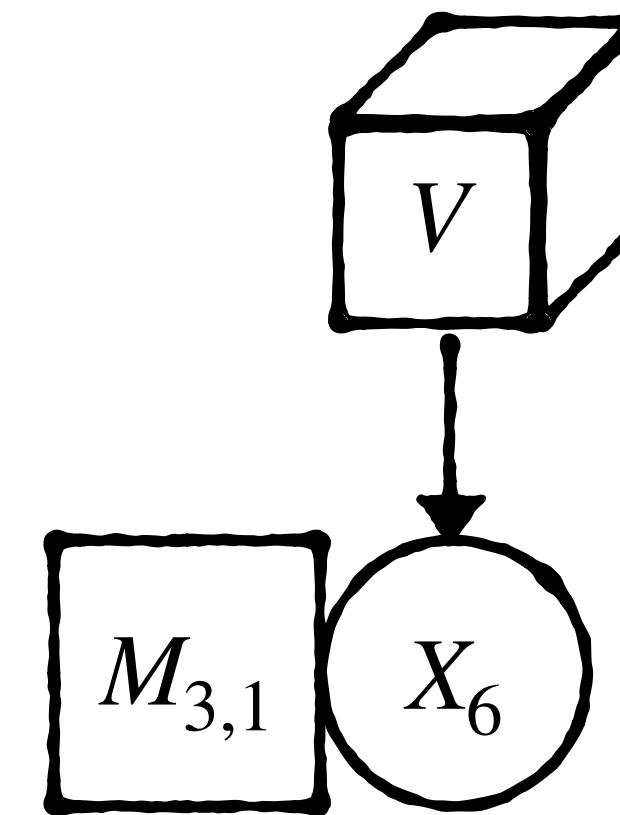
Kähler moduli: $T_B = t_B + i\chi_B$, transforms as

$$\chi^B \mapsto \chi^B + k_a^B \Lambda^a$$

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

- V sum of line bundles
- $G = SU(5) \times S(U(1)^5)$

Step 2 : Wilson-line breaking

- Further break $SU(5)$ to $SU(3) \times SU(2) \times U(1)$ using a Wilson line bundle

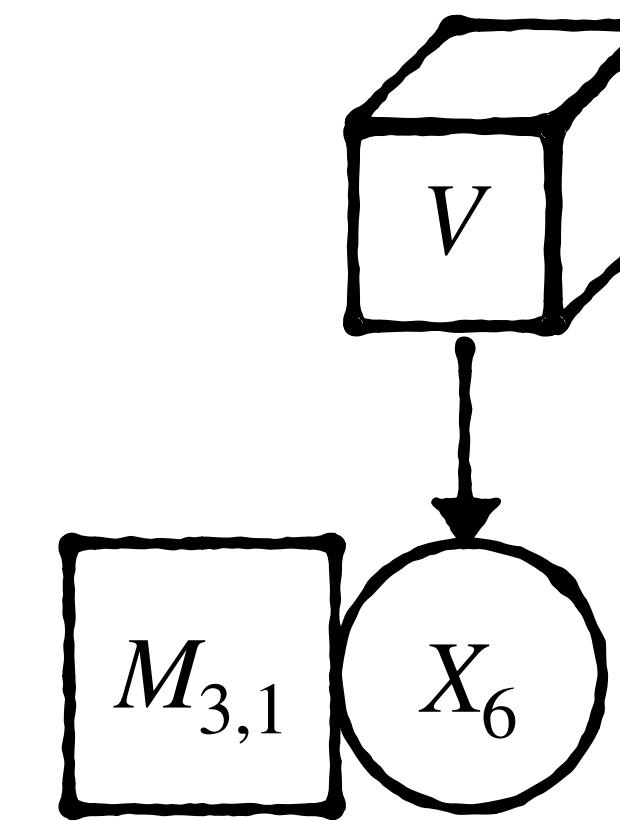
Low-energy matter field structure: **248** of E_8

Kähler moduli: $T_B = t_B + i\chi_B$, transforms as
 $\chi^B \mapsto \chi^B + k_a^B \Lambda^a$

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 1 : GUT Gauge Group

- V sum of line bundles
- $G = SU(5) \times S(U(1)^5)$

Large number of models with SM spectrum found by computational methods!
[Anderson et al. (2013), Constantin et al. (2018)]

Step 2 : Wilson-line breaking

- Further break $SU(5)$ to $SU(3) \times SU(2) \times U(1)$ using a Wilson line bundle

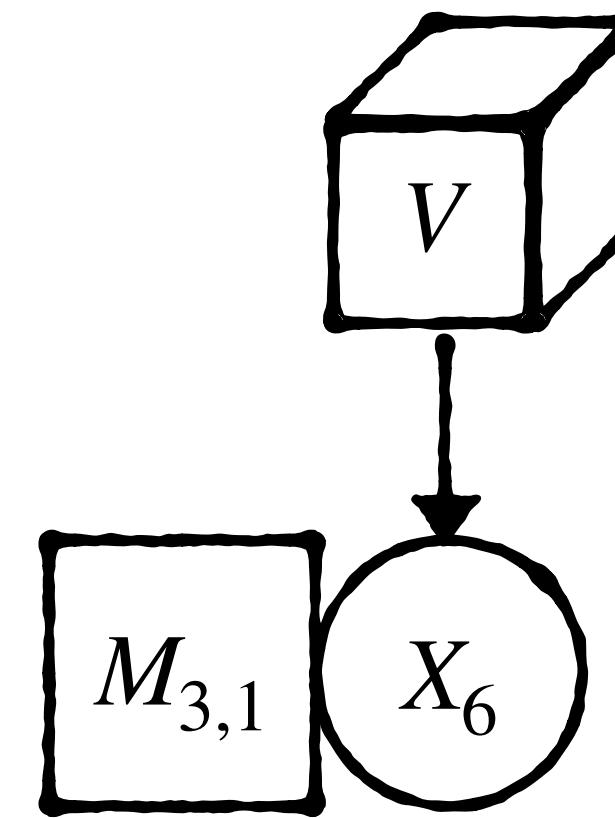
Low-energy matter field structure: **248** of E_8

Kähler moduli: $T_B = t_B + i\chi_B$, transforms as
 $\chi^B \mapsto \chi^B + k_a^B \Lambda^a$

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

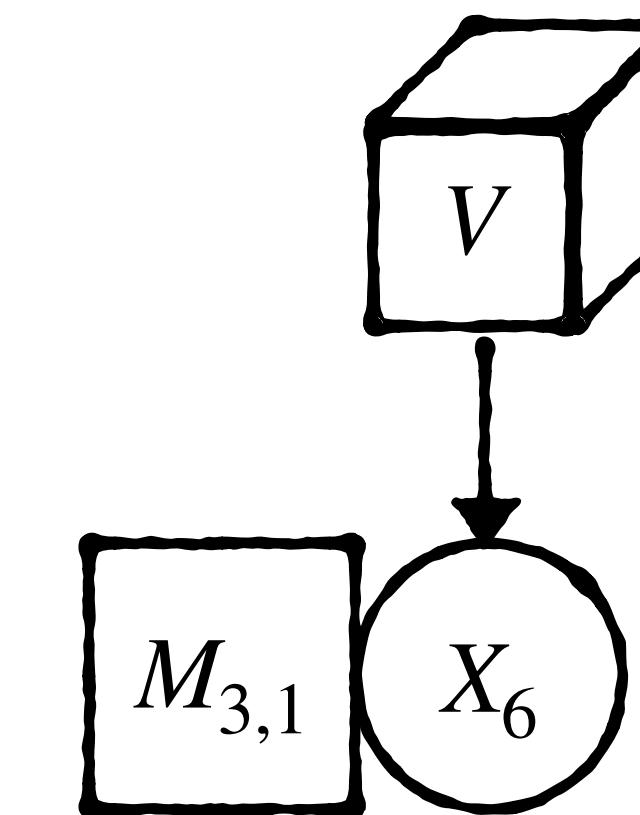
Step 3 : $U(1)$ symmetries

- Globally remnant $\mathcal{J} = S(U(1)^5)$ symmetries (GS-anomalous in HE) - exploit this to constrain couplings in effective theory
- This gives a degree of analytical control on low-energy effective theory

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 3 : $U(1)$ symmetries

- Globally remnant $\mathcal{J} = S(U(1)^5)$ symmetries (GS-anomalous in HE) - exploit this to constrain couplings in effective theory
- This gives a degree of analytical control on low-energy effective theory

A field C with charge $\mathbf{q}(C)$ in \mathcal{J} will transform as:

$$C \mapsto e^{-i\mathbf{q}(C) \cdot \epsilon} C$$

Use this to constrain the form of the Yukawa couplings in:

$$W = \hat{\Lambda}_{IJ}^u(\phi) H^u Q^I u^J$$

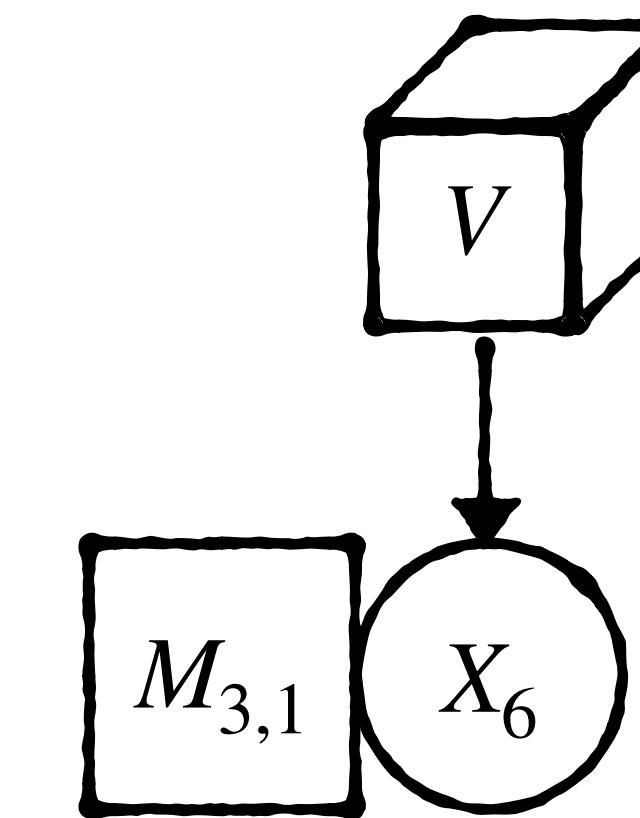
such that for example

$$\mathbf{q}(\hat{\Lambda}_{IJ}^u(\phi)) = -\mathbf{q}(H^u Q^I u^J)$$

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 3 : $U(1)$ symmetries

- Globally remnant $\mathcal{J} = S(U(1)^5)$ symmetries (GS-anomalous in HE) - exploit this to constrain couplings in effective theory
- This gives a degree of analytical control on low-energy effective theory

A field C with charge $\mathbf{q}(C)$ in \mathcal{J} will transform as:

$$C \mapsto e^{-i\mathbf{q}(C) \cdot \epsilon} C$$

Use this to constrain the form of the Yukawa couplings in:

$$W = \hat{\Lambda}_{IJ}^u(\phi) H^u Q^I u^J$$

such that for example

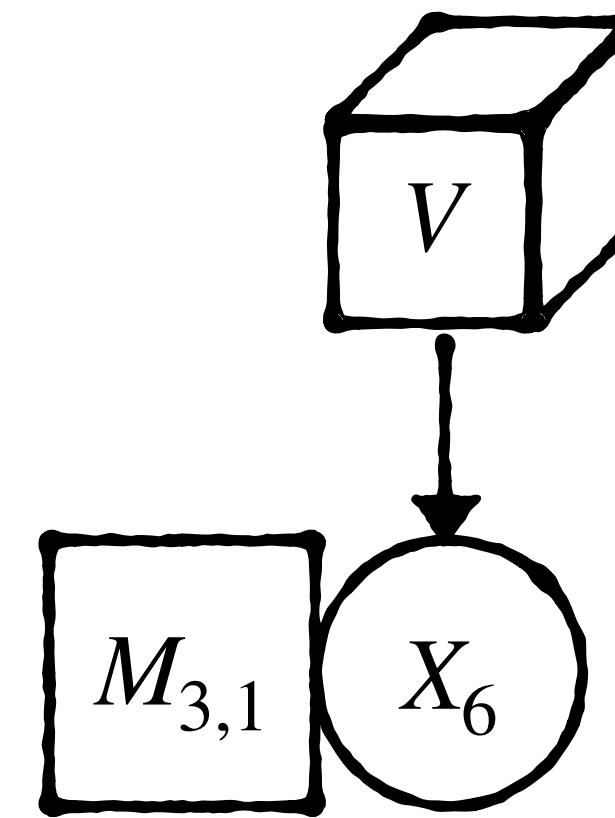
$$\mathbf{q}(\hat{\Lambda}_{IJ}^u(\phi)) = -\mathbf{q}(H^u Q^I u^J)$$

a function of moduli fields ϕ_a and Φ_a

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

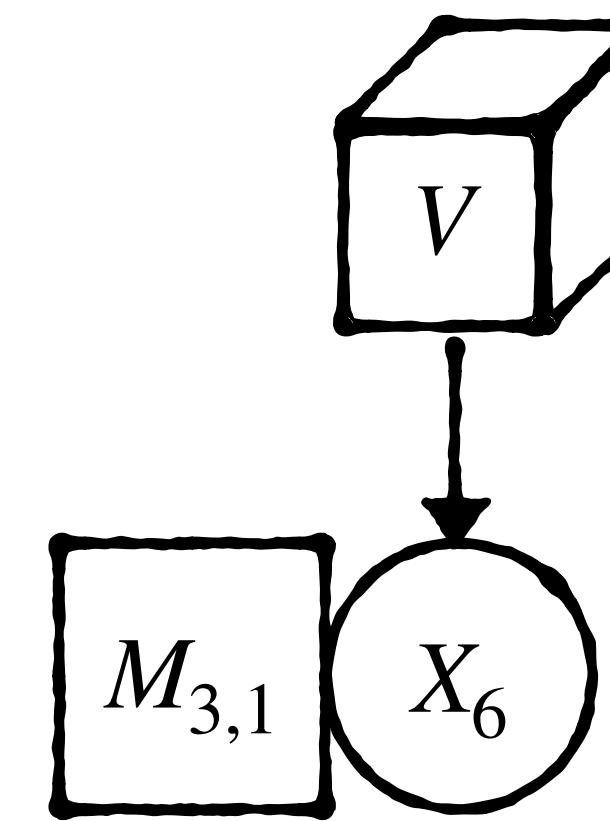
Step 3 : $U(1)$ symmetries

- Globally remnant $\mathcal{J} = S(U(1)^5)$ symmetries (GS-anomalous in HE) - exploit this to constrain couplings in effective theory
- This gives a degree of analytical control on low-energy effective theory

Heterotic CY Compactifications and Line Bundle Standard Models

Ingredients:

- heterotic $E_8 \times E_8$ superstring theory
- Calabi-Yau threefold X
- vector bundle $V \rightarrow X$ for vector multiplets



Mathematics	Physics
Topology	Spectrum
Geometry	Couplings

Step 3 : $U(1)$ symmetries

- Globally remnant $\mathcal{J} = S(U(1)^5)$ symmetries (GS-anomalous in HE) - exploit this to constrain couplings in effective theory
- This gives a degree of analytical control on low-energy effective theory

Can we calculate couplings and extract flavour physics?

Low-energy effective action and symmetries

- In low-energies the models are 4d $\mathcal{N} = 1$ SUSY Standard Models [Anderson et al. (2012)]
- Relevant terms in the Kähler potential and superpotential:

$$K = \hat{k}^u H^u \bar{H}^u + \hat{k}^d H^d \bar{H}^d + K_{IJ}^C C^I \bar{C}^J + \dots$$

$$W = \hat{\Lambda}_{IJ}^u H^u Q^I u^J + \hat{\Lambda}_{IJ}^d H^d Q^I d^J + \hat{\Lambda}_{IJ}^e H^d L^I e^J + \hat{\mu} H^u H^d + \hat{\mu}_I L^I H^u + \hat{\mu}_0$$

Low-energy effective action and symmetries

- In low-energies the models are 4d $\mathcal{N} = 1$ SUSY Standard Models [Anderson et al. (2012)]
- Relevant terms in the Kähler potential and superpotential:

$$K = \hat{k}^u H^u \bar{H}^u + \hat{k}^d H^d \bar{H}^d + K_{IJ}^C C^I \bar{C}^J + \dots$$

$$W = \hat{\Lambda}_{IJ}^u H^u Q^I u^J + \hat{\Lambda}_{IJ}^d H^d Q^I d^J + \hat{\Lambda}_{IJ}^e H^d L^I e^J + \hat{\mu} H^u H^d + \hat{\mu}_I L^I H^u + \hat{\mu}_0$$

Yukawa couplings

- fermion masses and mixings
- gives masses and mixings of quarks and charged lepton masses

$$m_u, m_c, \dots, V_{\text{CKM}}$$

$$m_e, m_\mu, m_\tau$$

Low-energy effective action and symmetries

- In low-energies the models are 4d $\mathcal{N} = 1$ SUSY Standard Models [Anderson et al. (2012)]
- Relevant terms in the Kähler potential and superpotential:

$$K = \hat{k}^u H^u \bar{H}^u + \hat{k}^d H^d \bar{H}^d + K_{IJ}^C C^I \bar{C}^J + \dots$$

$$W = \hat{\Lambda}_{IJ}^u H^u Q^I u^J + \hat{\Lambda}_{IJ}^d H^d Q^I d^J + \hat{\Lambda}_{IJ}^e H^d L^I e^J + \hat{\mu} H^u H^d + \hat{\mu}_I L^I H^u + \hat{\mu}_0$$

Yukawa couplings

- fermion masses and mixings
- gives masses and mixings of quarks and charged lepton masses

$$m_u, m_c, \dots, V_{\text{CKM}}$$

$$m_e, m_\mu, m_\tau$$

μ -term

- electroweak breaking scale
- this should be suppressed compared to the Planck scale as

$$M_H \sim 10^{-17} M_P$$

- can use VEVs of moduli fields to suppress this term

Low-energy effective action and symmetries

- In low-energies the models are 4d $\mathcal{N} = 1$ SUSY Standard Models [Anderson et al. (2012)]
- Relevant terms in the Kähler potential and superpotential:

$$K = \hat{k}^u H^u \bar{H}^u + \hat{k}^d H^d \bar{H}^d + K_{IJ}^C C^I \bar{C}^J + \dots$$

$$W = \hat{\Lambda}_{IJ}^u H^u Q^I u^J + \hat{\Lambda}_{IJ}^d H^d Q^I d^J + \hat{\Lambda}_{IJ}^e H^d L^I e^J + \hat{\mu} H^u H^d + \hat{\mu}_I L^I H^u + \hat{\mu}_0$$

Yukawa couplings

- fermion masses and mixings
- gives masses and mixings of quarks and charged lepton masses

$$m_u, m_c, \dots, V_{CKM}$$

$$m_e, m_\mu, m_\tau$$

μ -term

- electroweak breaking scale
- this should be suppressed compared to the Planck scale as

$$M_H \sim 10^{-17} M_P$$

- can use VEVs of moduli fields to suppress this term

Neutrino Physics

- want to get three light families of neutrinos via the see-saw mechanism
- bundle moduli ϕ_i with zero VEVs act as RH neutrinos
- $\hat{\mu}_I L^I H^u$ - Dirac mass terms
- $\hat{\mu}_0 \supset M_{ij} \phi_i \phi_j$ - Majorana mass terms

Goal

- Using the global $U(1)$ symmetries \mathcal{J} we write down low-energy effective Lagrangian
- Extract relevant phenomenological terms - are there models that give good phenomenology?

Goal

- Using the global $U(1)$ symmetries \mathcal{J} we write down low-energy effective Lagrangian
- Extract relevant phenomenological terms - are there models that give good phenomenology?

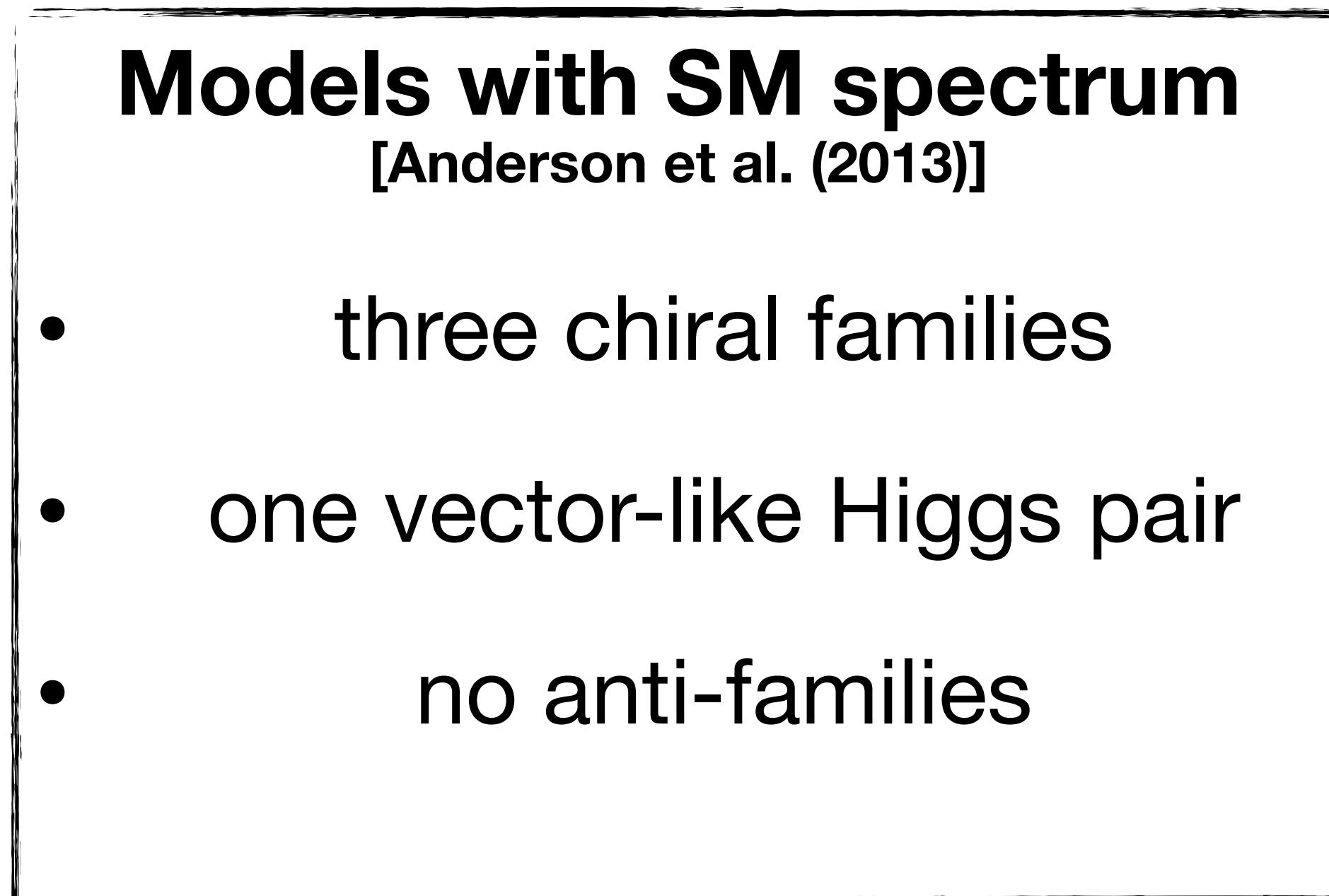
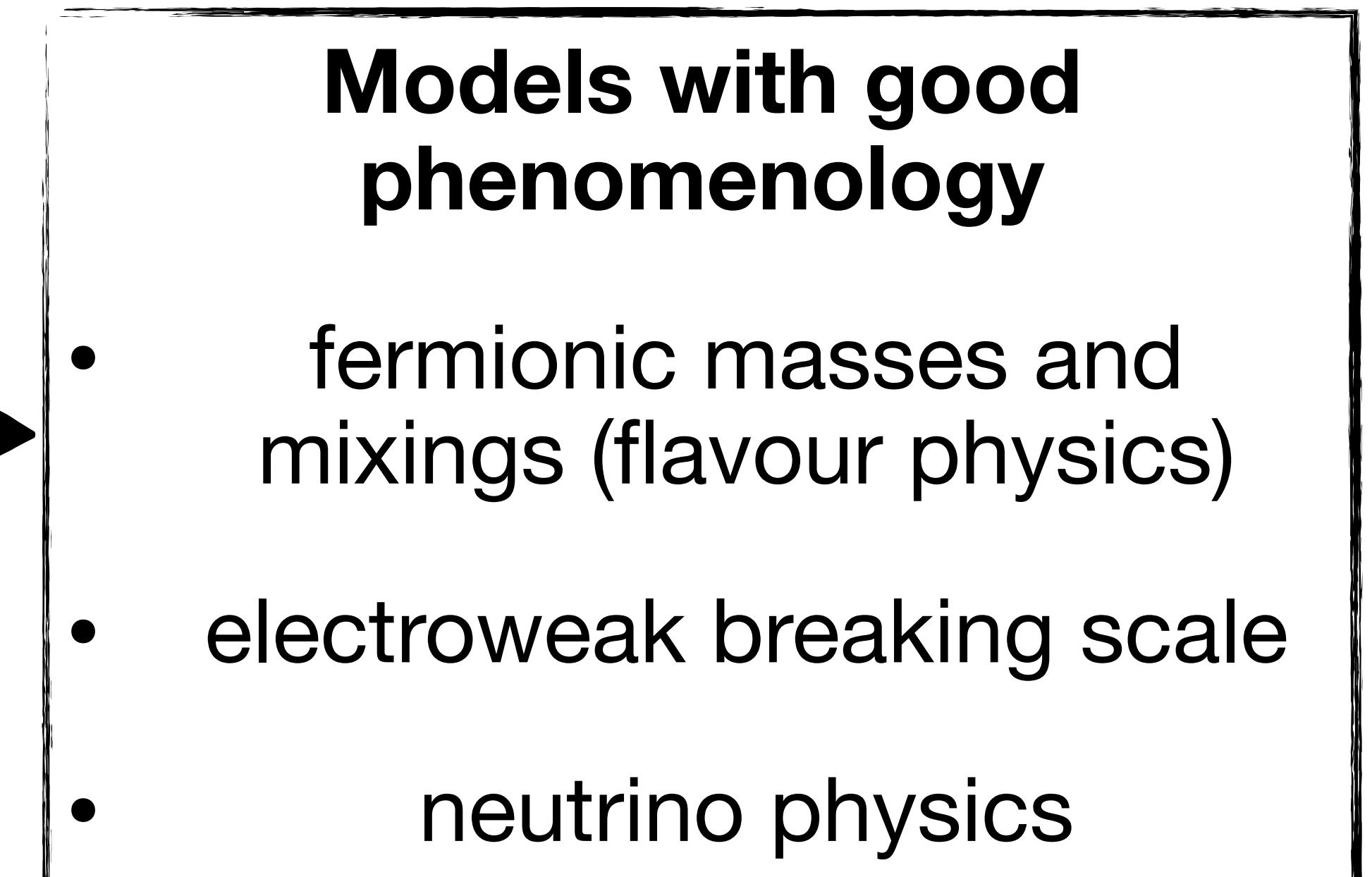
Models with SM spectrum

[Anderson et al. (2013)]

- three chiral families
- one vector-like Higgs pair
- no anti-families

Goal

- Using the global $U(1)$ symmetries \mathcal{J} we write down low-energy effective Lagrangian
- Extract relevant phenomenological terms - are there models that give good phenomenology?



Method

Models with SM spectrum Models with good pheno

Step 1: μ -term suppression

- $M_H \ll M_P$, use VEVs of moduli fields to set small μ -term
- find combinations of VEVs that would set $\mu \rightarrow 0$

Step 2: masses and mixings

- for each combination use remaining VEVs to obtain masses and mixings
- gradient descent algorithm to find suitable VEVs and Yukawa coefficients

Step 3: neutrino physics

- compute Dirac and Majorana couplings and construct neutrino masses - three light families?

Step 4: stabilise moduli and coefficients

- explain the values of the moduli VEVs and the Yukawa coefficients

Method

Models with SM spectrum Models with good pheno

Step 1: μ -term suppression

- $M_H \ll M_P$, use VEVs of moduli fields to set small μ -term
- find combinations of VEVs that would set $\mu \rightarrow 0$

Step 2: masses and mixings

- for each combination use remaining VEVs to obtain masses and mixings
- gradient descent algorithm to find suitable VEVs and Yukawa coefficients

Step 3: neutrino physics

- compute Dirac and Majorana couplings and construct neutrino masses - three light families?

$$\mu = \phi_1\phi_2 + \phi_2\Phi_1\Phi_2 + \phi_3\Phi_1$$

Set $\langle \phi_2 \rangle = \langle \Phi_1 \rangle = 0$

Step 4: stabilise moduli and coefficients

- explain the values of the moduli VEVs and the Yukawa coefficients

Method

Models with SM spectrum Models with good pheno

Step 1: μ -term suppression

- $M_H \ll M_P$, use VEVs of moduli fields to set small μ -term
- find combinations of VEVs that would set $\mu \rightarrow 0$

$$\mu = \phi_1\phi_2 + \phi_2\Phi_1\Phi_2 + \phi_3\Phi_1$$

$$\text{Set } \langle \phi_2 \rangle = \langle \Phi_1 \rangle = 0$$

Step 2: masses and mixings

- for each combination use remaining VEVs to obtain masses and mixings
- gradient descent algorithm to find suitable VEVs and Yukawa coefficients

$$Y_u = \begin{pmatrix} \phi_1\phi_3\phi_4 & \Phi_2 & \phi_3\phi_4 \\ \Phi_2 & \phi_1^2 & \phi_3 \\ \phi_3\phi_4 & \phi_3 & 1 + \phi_2\phi_3 \end{pmatrix}$$

Descent algorithm on
 $a_{ij}, \langle \phi_a \rangle, \langle \Phi_i \rangle$

Step 3: neutrino physics

- compute Dirac and Majorana couplings and construct neutrino masses - three light families?

Step 4: stabilise moduli and coefficients

- explain the values of the moduli VEVs and the Yukawa coefficients

Method

Models with SM spectrum Models with good pheno

Step 1: μ -term suppression

- $M_H \ll M_P$, use VEVs of moduli fields to set small μ -term
- find combinations of VEVs that would set $\mu \rightarrow 0$

$$\mu = \phi_1\phi_2 + \phi_2\Phi_1\Phi_2 + \phi_3\Phi_1$$

$$\text{Set } \langle \phi_2 \rangle = \langle \Phi_1 \rangle = 0$$

Step 2: masses and mixings

- for each combination use remaining VEVs to obtain masses and mixings
- gradient descent algorithm to find suitable VEVs and Yukawa coefficients

$$Y_u = \begin{pmatrix} \phi_1\phi_3\phi_4 & \Phi_2 & \phi_3\phi_4 \\ \Phi_2 & \phi_1^2 & \phi_3 \\ \phi_3\phi_4 & \phi_3 & 1 + \phi_2\phi_3 \end{pmatrix}$$

Descent algorithm on
 $a_{ij}, \langle \phi_a \rangle, \langle \Phi_i \rangle$

Step 3: neutrino physics

- compute Dirac and Majorana couplings and construct neutrino masses - three light families?

check if VEV choices
consistent with possible
neutrino physics

Step 4: stabilise moduli and coefficients

- explain the values of the moduli VEVs and the Yukawa coefficients

Results of Scans

General Observations

Results of Scans

General Observations

Numbers

Total number of Cicys	46
Number of Line Bundles with diagonal equivariant structure	26695
+ Higgs-pairs	19659
+ No anti-families	16255
+ No anti-families	12122
LBs with unresolved cohomology	4488
Number of low-energy spectra	6845
+ unique \mathcal{G} -spectra	6088
Number of pheno-viable models	41

Results of Scans

General Observations

Numbers

Total number of Cicys	46
Number of Line Bundles with diagonal equivariant structure	26695
+ Higgs-pairs	19659
+ No anti-families	16255
+ No anti-families	12122
LBs with unresolved cohomology	4488
Number of low-energy spectra	6845
+ unique \mathcal{G} -spectra	6088
Number of pheno-viable models	41

Phenomenological Observations

- Order-one coefficients may generate hierarchy
 - their ranges are bounded
- Need full-rank up-Yukawa textures
- Trade-off between increasing rank of down-Yukawa and decreasing order-one range
- Generically R-parity violating terms not suppressed

Example Model

μ -term analysis

Downstairs Spectrum

<i>Matter fields</i>	$\mathbf{10}_1, \mathbf{10}_2, \mathbf{10}_4, \bar{\mathbf{5}}_{1,5}, \bar{\mathbf{5}}_{2,5}, \bar{\mathbf{5}}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5 $\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$ $\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

Example Model

μ -term analysis

Downstairs Spectrum

<i>Matter fields</i>	$10_1, 10_2, 10_4, \bar{5}_{1,5}, \bar{5}_{2,5}, \bar{5}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5

$\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$
$\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

Compute μ -term insertions

$$\begin{aligned}\mu \sim & \phi_{1,2}\phi_{2,1} + \phi_{1,3}\phi_{3,1} + \phi_{1,2}\phi_{3,1}\phi_{2,3} \\ & + \phi_{4,3}\phi_{3,1}\phi_{1,4} + \phi_{4,2}\phi_{2,1}\phi_{1,4} + \phi_{1,2}^2\phi_{2,1}^2 \\ & + \dots,\end{aligned}$$

Example Model

μ -term analysis

Downstairs Spectrum

<i>Matter fields</i>	$10_1, 10_2, 10_4, \bar{5}_{1,5}, \bar{5}_{2,5}, \bar{5}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5

$\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$
$\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

Compute μ -term insertions

$$\begin{aligned}\mu \sim & \phi_{1,2}\phi_{2,1} + \phi_{1,3}\phi_{3,1} + \phi_{1,2}\phi_{3,1}\phi_{2,3} \\ & + \phi_{4,3}\phi_{3,1}\phi_{1,4} + \phi_{4,2}\phi_{2,1}\phi_{1,4} + \phi_{1,2}^2\phi_{2,1}^2 \\ & + \dots,\end{aligned}$$

Example Model

μ -term analysis

Downstairs Spectrum

<i>Matter fields</i>	$10_1, 10_2, 10_4, \bar{5}_{1,5}, \bar{5}_{2,5}, \bar{5}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5

$\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$
$\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

μ -term can be consistently set to zero if we pick

$$\left\{ \langle \Phi_3 \rangle, \langle \Phi_4 \rangle, \langle \Phi_5 \rangle, \langle \phi_{1,3} \rangle, \langle \phi_{1,4} \rangle, \langle \phi_{2,4} \rangle, \langle \phi_{2,5} \rangle, \langle \phi_{3,5} \rangle, \langle \phi_{1,2} \rangle \right\} \rightarrow 0$$

Compute μ -term insertions

$$\begin{aligned} \mu \sim & \phi_{1,2}\phi_{2,1} + \phi_{1,3}\phi_{3,1} + \phi_{1,2}\phi_{3,1}\phi_{2,3} \\ & + \phi_{4,3}\phi_{3,1}\phi_{1,4} + \phi_{4,2}\phi_{2,1}\phi_{1,4} + \phi_{1,2}^2\phi_{2,1}^2 \\ & + \dots, \end{aligned}$$

Example Model

Yukawa Masses

Downstairs Spectrum

<i>Matter fields</i>	$\mathbf{10}_1, \mathbf{10}_2, \mathbf{10}_4, \bar{\mathbf{5}}_{1,5}, \bar{\mathbf{5}}_{2,5}, \bar{\mathbf{5}}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5 $\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$ $\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

Example Model

Yukawa Masses

Downstairs Spectrum

<i>Matter fields</i>	$\mathbf{10}_1, \mathbf{10}_2, \mathbf{10}_4, \bar{\mathbf{5}}_{1,5}, \bar{\mathbf{5}}_{2,5}, \bar{\mathbf{5}}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5 $\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$ $\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

Yukawa Insertions

$$\Lambda^u \sim \begin{pmatrix} \Phi_5 & 0 & \Phi_5 \phi_{1,4} + \phi_{2,1} \\ 0 & 0 & 1 \\ \Phi_5 \phi_{1,4} + \phi_{2,1} & 1 & \Phi_5 \phi_{1,4}^2 + \phi_{1,4} \phi_{2,1} \end{pmatrix}$$

$$\Lambda^d \sim \begin{pmatrix} \Phi_2 \Phi_5 \phi_{2,1} + \phi_{3,1} & \Phi_2 \Phi_5 & 1 \\ \Phi_2 \Phi_5 & 0 & 0 \\ \Phi_2 \phi_{2,1}^2 + \phi_{1,4} \phi_{3,1} & \Phi_2 \Phi_5 \phi_{1,4} + \Phi_2 \phi_{2,1} & \phi_{1,4} \end{pmatrix}$$

Example Model

Yukawa Masses

Downstairs Spectrum

<i>Matter fields</i>	$\mathbf{10}_1, \mathbf{10}_2, \mathbf{10}_4, \bar{\mathbf{5}}_{1,5}, \bar{\mathbf{5}}_{2,5}, \bar{\mathbf{5}}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5 $\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$ $\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

Scan of VEV values

$$\Phi_2 \rightarrow 0.01, \Phi_5 \rightarrow 0.0130746, \phi_{1,4} \rightarrow 0.370977, \\ \phi_{2,1} \rightarrow 0.47089, \phi_{3,1} \rightarrow 0.1,$$

Yukawa Insertions

$$\Lambda^u \sim \begin{pmatrix} \Phi_5 & 0 & \Phi_5 \phi_{1,4} + \phi_{2,1} \\ 0 & 0 & 1 \\ \Phi_5 \phi_{1,4} + \phi_{2,1} & 1 & \Phi_5 \phi_{1,4}^2 + \phi_{1,4} \phi_{2,1} \end{pmatrix}$$

$$\Lambda^d \sim \begin{pmatrix} \Phi_2 \Phi_5 \phi_{2,1} + \phi_{3,1} & \Phi_2 \Phi_5 & 1 \\ \Phi_2 \Phi_5 & 0 & 0 \\ \Phi_2 \phi_{2,1}^2 + \phi_{1,4} \phi_{3,1} & \Phi_2 \Phi_5 \phi_{1,4} + \Phi_2 \phi_{2,1} & \phi_{1,4} \end{pmatrix}$$

Example Model

Yukawa Masses

Downstairs Spectrum

<i>Matter fields</i>	$\mathbf{10}_1, \mathbf{10}_2, \mathbf{10}_4, \bar{\mathbf{5}}_{1,5}, \bar{\mathbf{5}}_{2,5}, \bar{\mathbf{5}}_{3,5}$
<i>Higgs fields</i>	$H_{2,4}, \bar{H}_{2,4}$
<i>Moduli</i>	Φ_1, \dots, Φ_5

$\phi_{1,3}, \phi_{1,4}, \phi_{2,3}, \phi_{2,5}, \phi_{3,5},$
$\phi_{2,1}, \phi_{3,1}, \phi_{4,2}, \phi_{4,3}, \phi_{1,2}$

Yukawa Insertions

$$\Lambda^u \sim \begin{pmatrix} \Phi_5 & 0 & \Phi_5 \phi_{1,4} + \phi_{2,1} \\ 0 & 0 & 1 \\ \Phi_5 \phi_{1,4} + \phi_{2,1} & 1 & \Phi_5 \phi_{1,4}^2 + \phi_{1,4} \phi_{2,1} \end{pmatrix}$$

$$\Lambda^d \sim \begin{pmatrix} \Phi_2 \Phi_5 \phi_{2,1} + \phi_{3,1} & \Phi_2 \Phi_5 & 1 \\ \Phi_2 \Phi_5 & 0 & 0 \\ \Phi_2 \phi_{2,1}^2 + \phi_{1,4} \phi_{3,1} & \Phi_2 \Phi_5 \phi_{1,4} + \Phi_2 \phi_{2,1} & \phi_{1,4} \end{pmatrix}$$

Scan of VEV values

$$\Phi_2 \rightarrow 0.01, \Phi_5 \rightarrow 0.0130746, \phi_{1,4} \rightarrow 0.370977, \\ \phi_{2,1} \rightarrow 0.47089, \phi_{3,1} \rightarrow 0.1,$$

Masses and mixing

$$(m_u, m_d, m_t) = (0.0216, 1.27, 172.4) \text{GeV} \\ (m_d, m_s, m_b) = (0.00467, 0.093, 4.18) \text{GeV} \\ (m_e, m_\mu, m_\tau) = (0.000511, 0.106, 1.78) \text{GeV}$$

$$V_{\text{CKM}} = \begin{pmatrix} 0.970 & 0.242 & 0.00358 \\ 0.242 & 0.969 & 0.0448 \\ 0.00737 & 0.0444 & 0.999 \end{pmatrix}$$

Short Summary

- Explored possible phenomenological issues and properties of heterotic line bundle Standard Models up to Picard number 5
- $\mathcal{O}(10)$ models with suppressed μ -term and accurate charged fermion masses and mixings can be obtained
- Neutrino physics - nothing interesting so far...
- And R-parity needs more work too...

Moduli Stabilisation in String Theory

- So far we have only set moduli VEVs to the values that we need to get phenomenological agreements.
- Any realistic attempt to reproduce string models must address the large number of light scalar moduli fields.

Moduli Stabilisation in String Theory

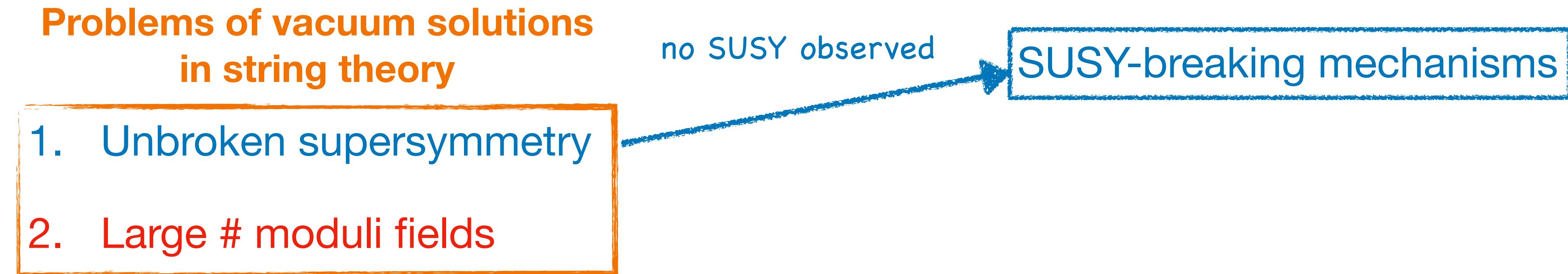
- So far we have only set moduli VEVs to the values that we need to get phenomenological agreements.
- Any realistic attempt to reproduce string models must address the large number of light scalar moduli fields.

Problems of vacuum solutions in string theory

1. Unbroken supersymmetry
2. Large # moduli fields

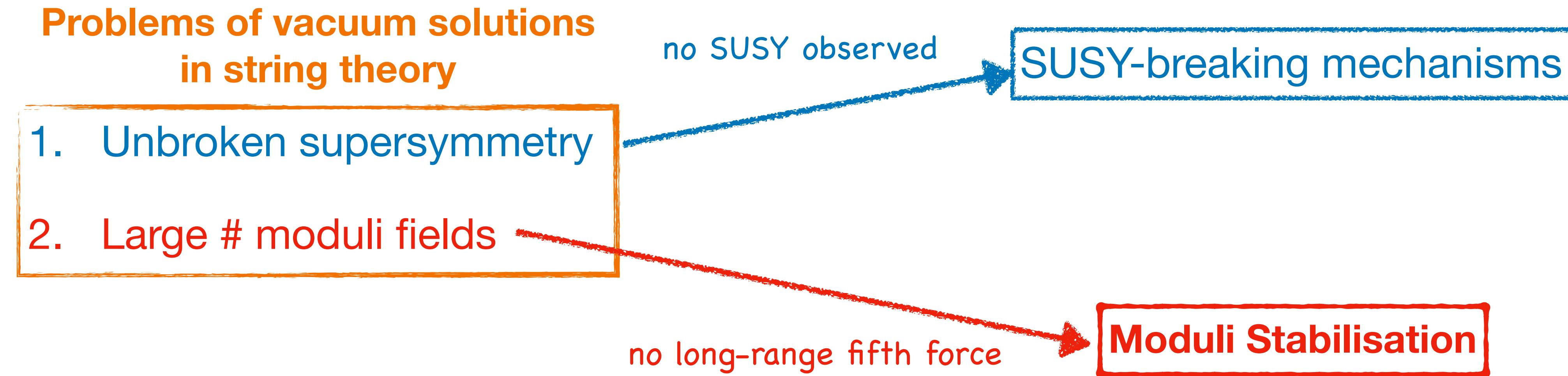
Moduli Stabilisation in String Theory

- So far we have only set moduli VEVs to the values that we need to get phenomenological agreements.
- Any realistic attempt to reproduce string models must address the large number of light scalar moduli fields.



Moduli Stabilisation in String Theory

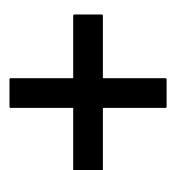
- So far we have only set moduli VEVs to the values that we need to get phenomenological agreements.
- Any realistic attempt to reproduce string models must address the large number of light scalar moduli fields.



Moduli Stabilisation in String Theory

Types of Moduli Fields

- complex structure moduli z_I
- Kähler moduli T_i
- gauge bundle moduli ϕ_a
- axiodilaton τ



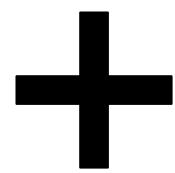
Non-vacuum solutions

- p -form quantised fluxes
- localised sources (D-branes)

Moduli Stabilisation in String Theory

Types of Moduli Fields

- complex structure moduli z_I
- Kähler moduli T_i
- gauge bundle moduli ϕ_a
- axiodilaton τ



Non-vacuum solutions

- p -form quantised fluxes
- localised sources (D-branes)

Flux Compactifications

- sources of stress-energy in internal space - non-vacuum solutions
- small corrections to vacuum solution
- lead to SUSY-breaking mass splitting
- generate scalar potential V for moduli fields - masses

Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- for a particular type of theory write down structure of superpotential W and Kähler potential K
- Superpotential:

$$W = W_{\text{flux}}(\tau, z_I) + W_{\text{np}}(\tau, z_I, T_i)$$

- Kähler potential:

$$K = K_{\text{tree}} + \dots$$

Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- for a particular type of theory write down structure of superpotential W and Kähler potential K
- Superpotential: perturbatively in orders of α' and g_s expansions

$$W = W_{\text{flux}}(\tau, z_I) + W_{\text{np}}(\tau, z_I, T_i)$$

- Kähler potential:

$$K = K_{\text{tree}} + \dots$$

Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d $\mathcal{N} = 1$ SUSY action

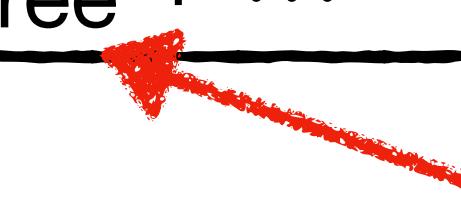
- for a particular type of theory write down structure of superpotential W and Kähler potential K
- Superpotential: perturbatively in orders of α' and g_s expansions

$$W = W_{\text{flux}}(\tau, z_I) + W_{\text{np}}(\tau, z_I, T_i)$$

- Kähler potential:

$$K = K_{\text{tree}} + \dots$$

exhibits no-scale structure



Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- for a particular type of theory write down structure of superpotential W and Kähler potential K

- Superpotential:
perturbatively in orders
of α' and g_s expansions

$$W = W_{\text{flux}}(\tau, z_I) + W_{\text{np}}(\tau, z_I, T_i)$$

- Kähler potential:

$$K = K_{\text{tree}} + \dots$$

exhibits no-scale
structure

need quantum
corrections in
 $W_{\text{np}}, K_{\text{pert}}, K_{\text{np}}$ to
stabilise T_i

Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- for a particular type of theory write down structure of superpotential W and Kähler potential K
- Superpotential: perturbatively in orders of α' and g_s expansions
$$W = W_{\text{flux}}(\tau, z_I) + W_{\text{np}}(\tau, z_I, T_i)$$
- Kähler potential:

$$K = K_{\text{tree}} + \dots$$

Step 2: Construct V and exploit structure

- key quantity is F-term scalar potential
$$V_F = e^K \left[K^{M\bar{N}} D_M W \bar{D}_{\bar{N}} \bar{W} - 3 |W|^2 \right]$$
- to obtain SUSY vacua - exploit structure such that F-terms of all moduli vanish exactly
$$D_{T_i} W = D_{z_I} W = D_\tau W = 0$$

exhibits no-scale structure

need quantum corrections in $W_{\text{np}}, K_{\text{pert}}, K_{\text{np}}$ to stabilise T_i

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- Start with type IIB flux compactifications on O3/O7 orientifolds
- Superpotential:

$$W = W_{\text{flux}}(\tau^*, z_I^*) + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

- Kähler potential:

$$K = -2 \log(2^{3/2} g_s^{-3/2} \mathcal{V}) - \log(-i(\tau - \bar{\tau})) - \log\left(-i \int \Omega \wedge \Omega\right) \dots$$

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- Start with type IIB flux compactifications on O3/O7 orientifolds

- Superpotential:

$$W = W_{\text{flux}}(\tau^*, z_I^*) + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

$W_{\text{np}}(\tau, z_I, T_i)$

- Kähler potential:

$$K = -2 \log(2^{3/2} g_s^{-3/2} \mathcal{V}) - \log(-i(\tau - \bar{\tau})) - \log\left(-i \int \Omega \wedge \Omega\right) \dots$$

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- Start with type IIB flux compactifications on O3/O7 orientifolds

- Superpotential:

$$W = W_{\text{flux}}(\tau^*, z_I^*) + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

$W_{\text{np}}(\tau, z_I, T_i)$

- Kähler potential: K_{tree}

$$K = -2 \log(2^{3/2} g_s^{-3/2} \mathcal{V}) - \log(-i(\tau - \bar{\tau})) - \log\left(-i \int \Omega \wedge \Omega\right) \dots$$

$K_{(\alpha')^3}$

K_{CS}

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- Start with type IIB flux compactifications on O3/O7 orientifolds
- Superpotential:

$$W = W_{\text{flux}}(\tau^*, z_I^*) + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

- Kähler potential: K_{tree} $K_{(\alpha')^3}$ K_{cs}

$$K = -2 \log(2^{3/2} g_s^{-3/2} \mathcal{V}) - \log(-i(\tau - \bar{\tau})) - \log\left(-i \int \Omega \wedge \Omega\right) \dots$$

Key idea 1

if $W_0 = \langle W_{\text{flux}} \rangle$ exponentially small, small SUSY-breaking of fluxes is compensated by W_{np}

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- Start with type IIB flux compactifications on O3/O7 orientifolds
- Superpotential:

$$W = W_{\text{flux}}(\tau^*, z_I^*) + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Kähler potential: K_{tree} $K_{(\alpha')^3}$ K_{CS}

$$K = -2 \log(2^{3/2} g_s^{-3/2} \mathcal{V}) - \log(-i(\tau - \bar{\tau})) - \log\left(-i \int \Omega \wedge \Omega\right) \dots$$

$W_{np}(\tau, z_I, T_i)$

Step 2: Construct V and exploit structure

- The full potential is

$$V = e^K \left[K^{M\bar{N}} D_M W \bar{D}_{\bar{N}} \bar{W} - 3|W|^2 \right] + V_{\text{up}}$$

- vacuum occurs in regime where all approximations are valid ($g_s \ll 1$, α' -exp., back-reactions)
- complex structure stabilised near conifold singularity and fluxes lead to Klebanov-Strassler throat region
- V_{up} - contribution by anti-D3 branes at the throat causes uplift to dS vacua

Key idea 1

if $W_0 = \langle W_{\text{flux}} \rangle$ exponentially small, small SUSY-breaking of fluxes is compensated by W_{np}

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- Start with type IIB flux compactifications on O3/O7 orientifolds
- Superpotential:

$$W = W_{\text{flux}}(\tau^*, z_I^*) + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Kähler potential: K_{tree} $K_{(\alpha')^3}$ K_{CS}

$$K = -2 \log(2^{3/2} g_s^{-3/2} \mathcal{V}) - \log(-i(\tau - \bar{\tau})) - \log\left(-i \int \Omega \wedge \Omega\right) \dots$$

$W_{np}(\tau, z_I, T_i)$

Step 2: Construct V and exploit structure

- The full potential is

$$V = e^K \left[K^{M\bar{N}} D_M W \bar{D}_{\bar{N}} \bar{W} - 3|W|^2 \right] + V_{\text{up}}$$

- vacuum occurs in regime where all approximations are valid ($g_s \ll 1$, α' -exp., back-reactions)
- complex structure stabilised near conifold singularity and fluxes lead to Klebanov-Strassler throat region
- V_{up} - contribution by anti-D3 branes at the throat causes uplift to dS vacua

Key idea 1

if $W_0 = \langle W_{\text{flux}} \rangle$ exponentially small, small SUSY-breaking of fluxes is compensated by W_{np}

Moduli Stabilisation in Heterotic Theories

The KKLT Scenario

Step 1: 4d $\mathcal{N} = 1$ SUSY action

- Start with type IIB flux compactifications on O3/O7 orientifolds
- Superpotential:

$$W = W_{\text{flux}}(\tau^*, z_I^*) + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Kähler potential: K_{tree} $K_{(\alpha')^3}$ K_{cs}

$$K = -2 \log(2^{3/2} g_s^{-3/2} \mathcal{V}) - \log(-i(\tau - \bar{\tau})) - \log\left(-i \int \Omega \wedge \Omega\right) \dots$$

$W_{np}(\tau, z_I, T_i)$

Step 2: Construct V and exploit structure

- The full potential is

$$V = e^K \left[K^{M\bar{N}} D_M W \bar{D}_{\bar{N}} \bar{W} - 3|W|^2 \right] + V_{\text{up}}$$

- vacuum occurs in regime where all approximations are valid ($g_s \ll 1$, α' -exp., back-reactions)
- complex structure stabilised near conifold singularity and fluxes lead to Klebanov-Strassler throat region
- V_{up} - contribution by anti-D3 branes at the throat causes uplift to dS vacua

Key idea 1

if $W_0 = \langle W_{\text{flux}} \rangle$ exponentially small, small SUSY-breaking of fluxes is compensated by W_{np}

Key idea 2

compactification near conifold singularity allows controllable breaking of SUSY

Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is W_{flux} ?

Classical Gukov-Vafa-Witten flux superpotential:

$$W_{\text{flux}} \sim \int_{X_6} G_3 \wedge \Omega$$

Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is W_{flux} ?

Classical Gukov-Vafa-Witten flux superpotential:

$$W_{\text{flux}} \sim \int_{X_6} G_3 \wedge \Omega$$

$$\text{flux } G_3 = F_3 - \tau H_3$$

Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is W_{flux} ?

Classical Gukov-Vafa-Witten flux superpotential:

$$W_{\text{flux}} \sim \int_{X_6} G_3 \wedge \Omega$$

$$\text{flux } G_3 = F_3 - \tau H_3$$

holomorphic (3,0) form on X_6

Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is W_{flux} ?

Classical Gukov-Vafa-Witten flux superpotential:

$$W_{\text{flux}} \sim \int_{X_6} G_3 \wedge \Omega$$

$$\text{flux } G_3 = F_3 - \tau H_3$$

holomorphic (3,0) form on X_6

$$F_3 = dC_2$$

RR 3-form flux

$$H_3 = dB_2$$

NSNS 3-form flux

Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is W_{flux} ?

Classical Gukov-Vafa-Witten flux superpotential:

$$W_{\text{flux}} \sim \int_{X_6} G_3 \wedge \Omega$$

$$\text{flux } G_3 = F_3 - \tau H_3$$

holomorphic (3,0) form on X_6

stabilise complex structure moduli

$$F_3 = dC_2$$

RR 3-form flux

$$H_3 = dB_2$$

NSNS 3-form flux

Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is W_{flux} ?

Classical Gukov-Vafa-Witten flux superpotential:

$$W_{\text{flux}} \sim \int_{X_6} G_3 \wedge \Omega$$

$$\text{flux } G_3 = F_3 - \tau H_3$$

$$F_3 = dC_2$$

RR 3-form flux

$$H_3 = dB_2$$

NSNS 3-form flux

holomorphic (3,0) form on X_6

stabilise complex structure moduli

Typically introduce symplectic basis of $\alpha_A, \beta^A \in H_3(X_6, \mathbb{Z})$, $A = 0, \dots, h^{2,1}$

Define period vector Π as

$$\Pi = \begin{pmatrix} \int \Omega \wedge \beta_A \\ \int \Omega \wedge \alpha^A \end{pmatrix} = \begin{pmatrix} \mathcal{F}_A \\ \mathcal{Z}^A \end{pmatrix},$$

such that

\mathcal{Z}^A - homogeneous projective coords on cs moduli space

$$\mathcal{F} - \text{prepotential}, \quad \mathcal{F}_B = \frac{\partial \mathcal{F}}{\partial \mathcal{Z}^B}$$

$$\Omega = \mathcal{Z}^A \alpha_A - \mathcal{F}_B \beta^B \quad \text{holomorphic 3-form}$$

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

Available Fluxes

Type IIB (KKLT)

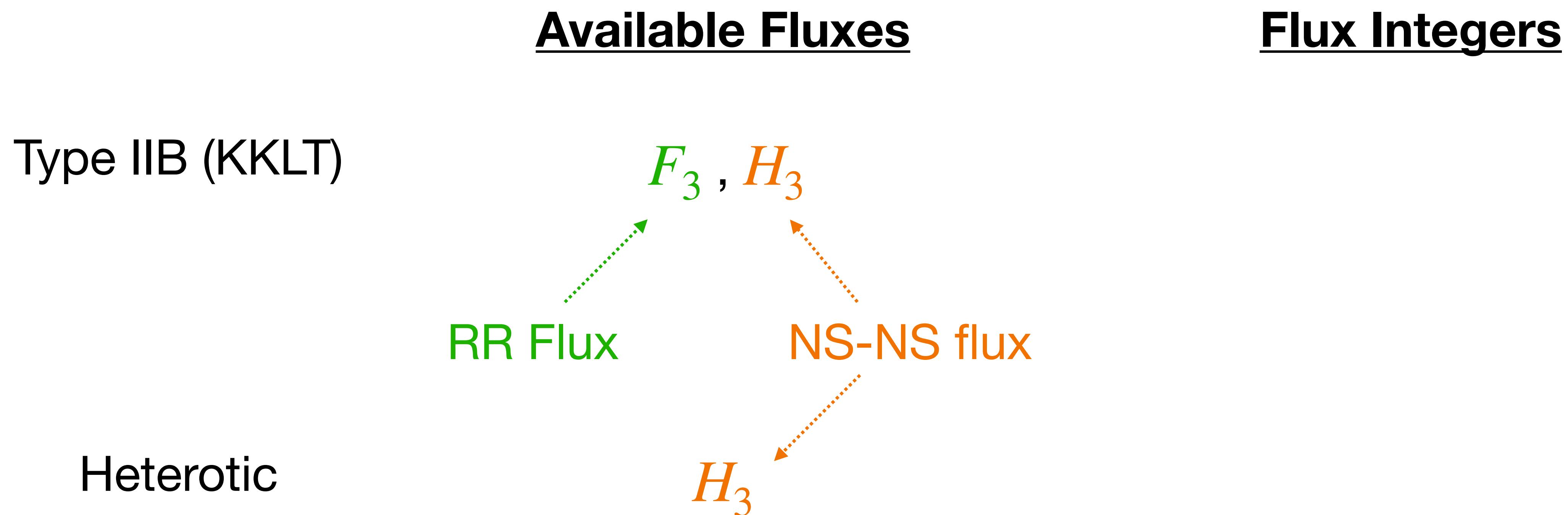
Flux Integers

Heterotic

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

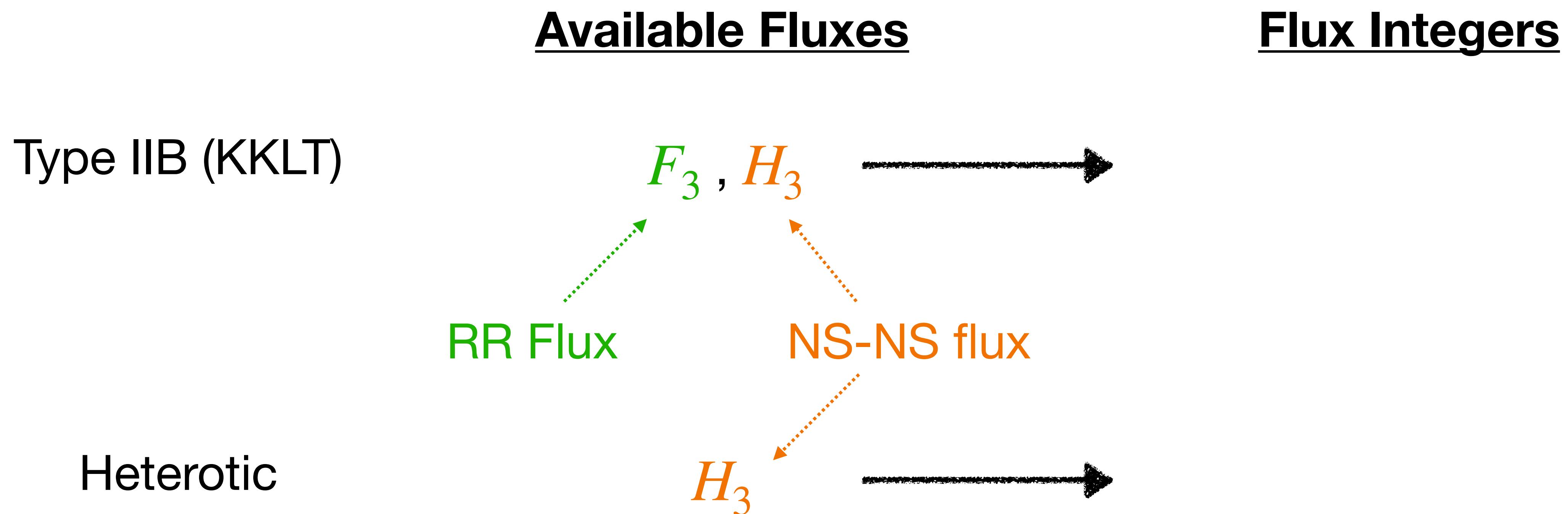
Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?



Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

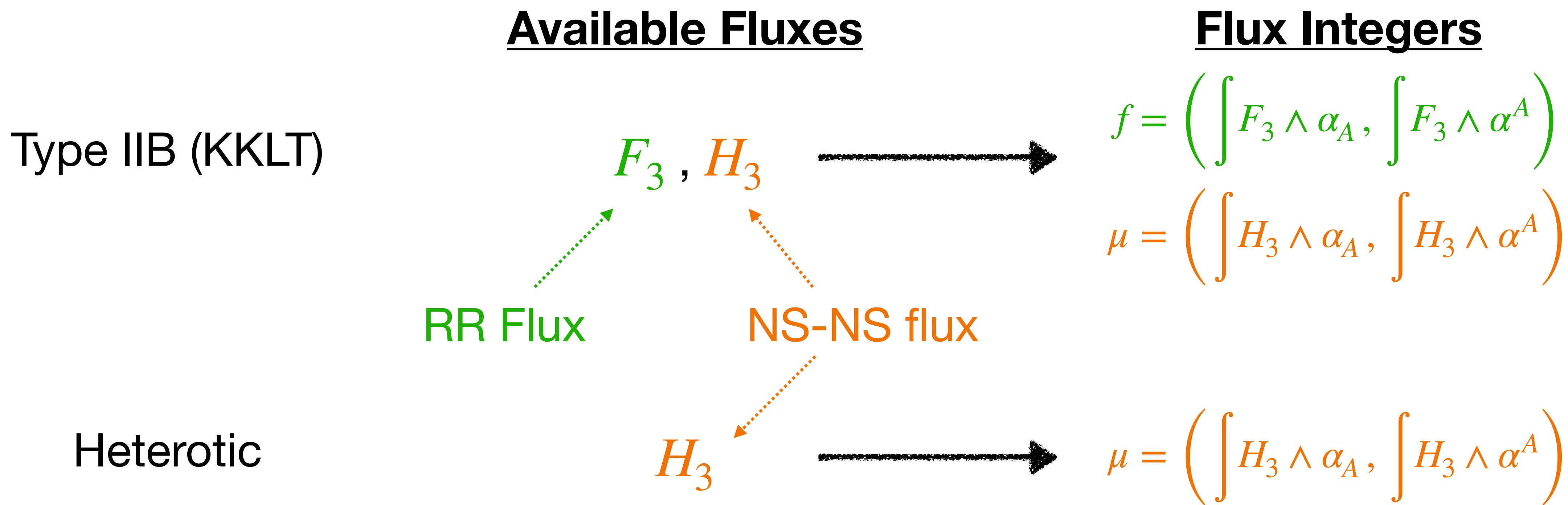
Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?



Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?



Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

$$W = W_0 + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

$$W = W_0 + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Type IIB (KKLT)

Heterotic

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

$$W = W_0 + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Type IIB (KKLT)

f are quantised fluxes of F_3

μ are quantised fluxes of H_3

$$W_0 = \sqrt{\frac{2}{\pi}} (f - \tau \mu)^T \cdot \eta \cdot \Pi$$

Heterotic

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

$$W = W_0 + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Type IIB (KKLT)

$$W_0 = \sqrt{\frac{2}{\pi}} (f - \tau \mu)^T \cdot \eta \cdot \Pi$$

f are quantised fluxes of F_3 μ are quantised fluxes of H_3

can make W_0 small
due to large number of
RR fluxes

Heterotic

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

$$W = W_0 + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Type IIB (KKLT)

$$W_0 = \sqrt{\frac{2}{\pi}} (f - \tau \mu)^T \cdot \eta \cdot \Pi$$

f are quantised fluxes of F_3 μ are quantised fluxes of H_3

can make W_0 small
due to large number of
RR fluxes

Heterotic

$$W = W_0 + \mathcal{B}(\tau, z_I, \phi_a) e^{-2\pi T_i} + \dots$$

some Pfaffian

$$W_0 = \mu^T \cdot \eta \cdot \Pi$$

Moduli Stabilisation in Heterotic Theories

IIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic $E_8 \times E_8$ theories?

$$W = W_0 + \mathcal{A}(\tau, z_I) e^{-2\pi T_i/c(G)} + \dots$$

Type IIB (KKLT)

$$W_0 = \sqrt{\frac{2}{\pi}} (f - \tau \mu)^T \cdot \eta \cdot \Pi$$

f are quantised fluxes of F_3 μ are quantised fluxes of H_3

can make W_0 small
due to large number of
RR fluxes

Heterotic

$$W = W_0 + \mathcal{B}(\tau, z_I, \phi_a) e^{-2\pi T_i} + \dots$$

some Pfaffian

$$W_0 = \mu^T \cdot \eta \cdot \Pi$$

No RR fluxes - traditional
small W_0 argument does
not work - WHAT DO WE
DO?

Moduli Stabilisation in Heterotic Theories

Quick Recap

- Natural context to study moduli stabilisation - **flux compactifications**
- Most prominent example - **KKLT scenario**, requires small W_0
- Argument requires **large number of RR fluxes** which does not exist in heterotic theories
- Is it possible that we have W_0 ‘**accidentally**’ small to compete with the small non-perturbative term? For example - some natural region in complex structure moduli space that gives small W_0 ?

Heterotic Moduli Stabilisation

Setting the scene

Recall introduced symplectic basis of
 $\alpha_A, \beta^A \in H_3(X_6, \mathbb{Z}), A = 0, \dots, h^{2,1}$

Defined period vector Π as

$$\Pi = \begin{pmatrix} \int \Omega \wedge \beta_A \\ \int \Omega \wedge \alpha^A \end{pmatrix} = \begin{pmatrix} \mathcal{F}_A \\ \mathcal{Z}^A \end{pmatrix},$$

Heterotic Moduli Stabilisation

Setting the scene

- Goal: To analyse whether W_0 can be small in the heterotic setting - only look at complex structure moduli dependence.
- The superpotential and Kähler potential at tree-level are:

$$W = w \int_{X_6} H_3 \wedge \Omega = w [n_A \mathcal{Z}^A - m^A \mathcal{F}_A] = w \mu^T \eta \Pi$$

$$K = -\log \left(i \int_{X_6} \Omega \wedge \bar{\Omega} \right) = -\log \left[i (\bar{\mathcal{Z}}^A \mathcal{F}_A - \mathcal{Z}^A \bar{\mathcal{F}}_A) \right] = \log (-i \Pi^\dagger \eta \Pi)$$

where $\eta = \begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix}$ is the symplectic defining matrix.

Recall introduced symplectic basis of $\alpha_A, \beta^A \in H_3(X_6, \mathbb{Z}), A = 0, \dots, h^{2,1}$

Defined period vector Π as

$$\Pi = \begin{pmatrix} \int \Omega \wedge \beta_A \\ \int \Omega \wedge \alpha^A \end{pmatrix} = \begin{pmatrix} \mathcal{F}_A \\ \mathcal{Z}^A \end{pmatrix},$$

Heterotic Moduli Stabilisation

Setting the scene

- Goal: To analyse whether W_0 can be small in the heterotic setting - only look at complex structure moduli dependence.
- The superpotential and Kähler potential at tree-level are:

$$W = w \int_{X_6} H_3 \wedge \Omega = w [n_A \mathcal{Z}^A - m^A \mathcal{F}_A] = w \mu^T \eta \Pi$$

$$K = -\log \left(i \int_{X_6} \Omega \wedge \bar{\Omega} \right) = -\log \left[i (\bar{\mathcal{Z}}^A \mathcal{F}_A - \mathcal{Z}^A \bar{\mathcal{F}}_A) \right] = \log (-i \Pi^\dagger \eta \Pi)$$

where $\eta = \begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix}$ is the symplectic defining matrix.

Recall introduced symplectic basis of $\alpha_A, \beta^A \in H_3(X_6, \mathbb{Z}), A = 0, \dots, h^{2,1}$

Defined period vector Π as

$$\Pi = \begin{pmatrix} \int \Omega \wedge \beta_A \\ \int \Omega \wedge \alpha^A \end{pmatrix} = \begin{pmatrix} \mathcal{F}_A \\ \mathcal{Z}^A \end{pmatrix},$$

Things to calculate

- Scalar potential:

$$V = e^K \left(K^{a\bar{b}} D_a W D_{\bar{b}} \bar{W} - 3 |W|^2 \right)$$

- Global SUSY vacua:

$$\frac{\partial W}{\partial Z^a} = 0$$

- Local SUSY vacua:

$$F_a = W_a + K_a W = 0$$

Heterotic Moduli Stabilisation

Setting the scene

- Goal: To analyse whether W_0 can be small in the heterotic setting - only look at complex structure moduli dependence.
- The superpotential and Kähler potential at tree-level are:

$$W = w \int_{X_6} H_3 \wedge \Omega = w [n_A \mathcal{Z}^A - m^A \mathcal{F}_A] = w \mu^T \eta \Pi$$

$$K = -\log \left(i \int_{X_6} \Omega \wedge \bar{\Omega} \right) = -\log \left[i (\bar{\mathcal{Z}}^A \mathcal{F}_A - \mathcal{Z}^A \bar{\mathcal{F}}_A) \right] = \log (-i \Pi^\dagger \eta \Pi)$$

where $\eta = \begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix}$ is the symplectic defining matrix.

have defined affine versions of the
cs coordinate: $Z^A = \frac{\mathcal{Z}^A}{\mathcal{Z}^0}$ on the
patch $\mathcal{Z}^0 \neq 0$

Recall introduced symplectic basis of
 $\alpha_A, \beta^A \in H_3(X_6, \mathbb{Z}), A = 0, \dots, h^{2,1}$

Defined period vector Π as

$$\Pi = \begin{pmatrix} \int \Omega \wedge \beta_A \\ \int \Omega \wedge \alpha^A \end{pmatrix} = \begin{pmatrix} \mathcal{F}_A \\ \mathcal{Z}^A \end{pmatrix},$$

Things to calculate

- Scalar potential:

$$V = e^K \left(K^{a\bar{b}} D_a W D_{\bar{b}} \bar{W} - 3 |W|^2 \right)$$

- Global SUSY vacua:

$$\frac{\partial W}{\partial Z^a} = 0$$

- Local SUSY vacua:

$$F_a = W_a + K_a W = 0$$

Heterotic Moduli Stabilisation

Large Complex Structure Limit

- Let us first look at large complex structure limit, where $\mathcal{Z}^A \rightarrow \infty$.
- In this case the leading pre-potential is

$$\mathcal{F} = -\frac{1}{6} \frac{\tilde{d}_{abc} \mathcal{Z}^a \mathcal{Z}^b \mathcal{Z}^c}{\mathcal{Z}^0}$$

$\tilde{\kappa} = \tilde{d}_{abc} z^a z^b z^c$ is mirror volume

Heterotic Moduli Stabilisation

Large Complex Structure Limit

- Let us first look at large complex structure limit, where $\mathcal{Z}^A \rightarrow \infty$.
- In this case the leading pre-potential is

$$\mathcal{F} = -\frac{1}{6} \frac{\tilde{d}_{abc} \mathcal{Z}^a \mathcal{Z}^b \mathcal{Z}^c}{\mathcal{Z}^0}$$

Global SUSY

- Want to set

$$\frac{\partial W}{\partial Z^a} = w \left[in_a - \tilde{d}_{abc} m^b Z^c + \frac{im^0}{2} \tilde{d}_{abc} Z^b Z^c \right] = 0$$

- Crucial obstacle - solving this leaves

$$\Im(W_0) = w \left[-\frac{m^0}{3} \tilde{\kappa} \right]$$

- This cannot be set small since $\tilde{\kappa} \gg 1$

$\tilde{\kappa} = \tilde{d}_{abc} Z^a Z^b Z^c$ is mirror volume

Heterotic Moduli Stabilisation

Large Complex Structure Limit

- Let us first look at large complex structure limit, where $\mathcal{Z}^A \rightarrow \infty$.
- In this case the leading pre-potential is

$$\mathcal{F} = -\frac{1}{6} \frac{\tilde{d}_{abc} \mathcal{Z}^a \mathcal{Z}^b \mathcal{Z}^c}{\mathcal{Z}^0}$$

Global SUSY

- Want to set

$$\frac{\partial W}{\partial Z^a} = w \left[in_a - \tilde{d}_{abc} m^b Z^c + \frac{im^0}{2} \tilde{d}_{abc} Z^b Z^c \right] = 0$$

- Crucial obstacle - solving this leaves

$$\Im(W_0) = w \left[-\frac{m^0}{3} \tilde{\kappa} \right]$$

- This cannot be set small since $\tilde{\kappa} \gg 1$

Local SUSY

- Want to set

$$F_a = \frac{\partial W}{\partial Z^a} - 2Z_a W = 0$$

- Crucial obstacle - solving this leaves

$$\Im(W_0) = w \left[\frac{2m^0}{3} \tilde{\kappa} \right]$$

- This cannot be set small since $\tilde{\kappa} \gg 1$

$\tilde{\kappa} = \tilde{d}_{abc} Z^a Z^b Z^c$ is mirror volume

Heterotic Moduli Stabilisation

General Complex Structure

- For general complex structure we do not have a general form of the pre-potential \mathcal{F} .
- Typically complicated - given by **hypergeometric functions**...
- Similar general arguments suggest that there is **no consistent SUSY Minkowski vacua**. But doesn't forbid AdS or dS vacua.
- What if we look at explicit examples to analyse general complex structure moduli spaces?

Mirror Quintic

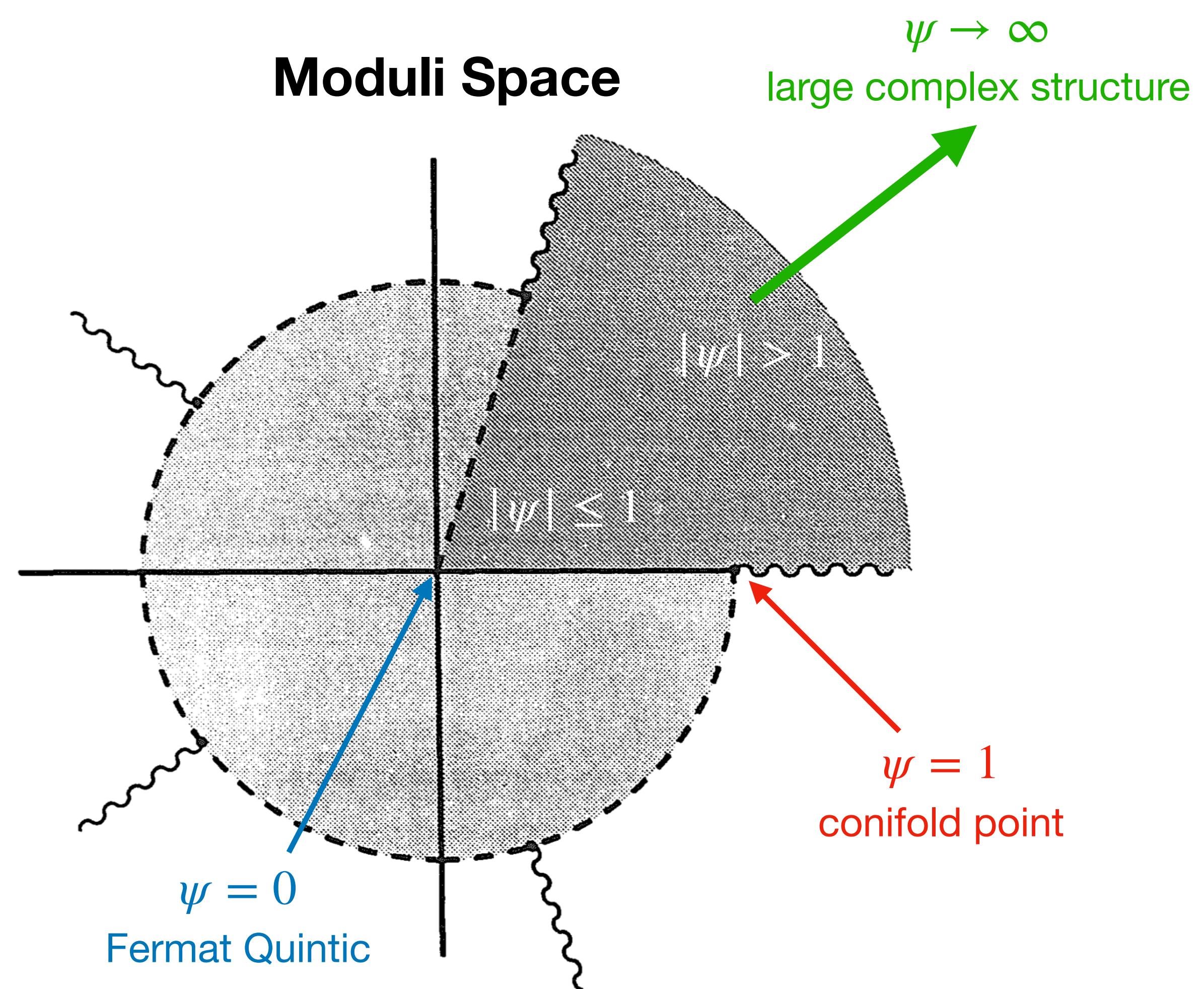
Manifold

$$p = \sum_{k=1}^5 x_k^5 - 5\psi \prod_{k=1}^5 x_k$$

Mirror Quintic

Manifold

$$p = \sum_{k=1}^5 x_k^5 - 5\psi \prod_{k=1}^5 x_k$$



Mirror Quintic

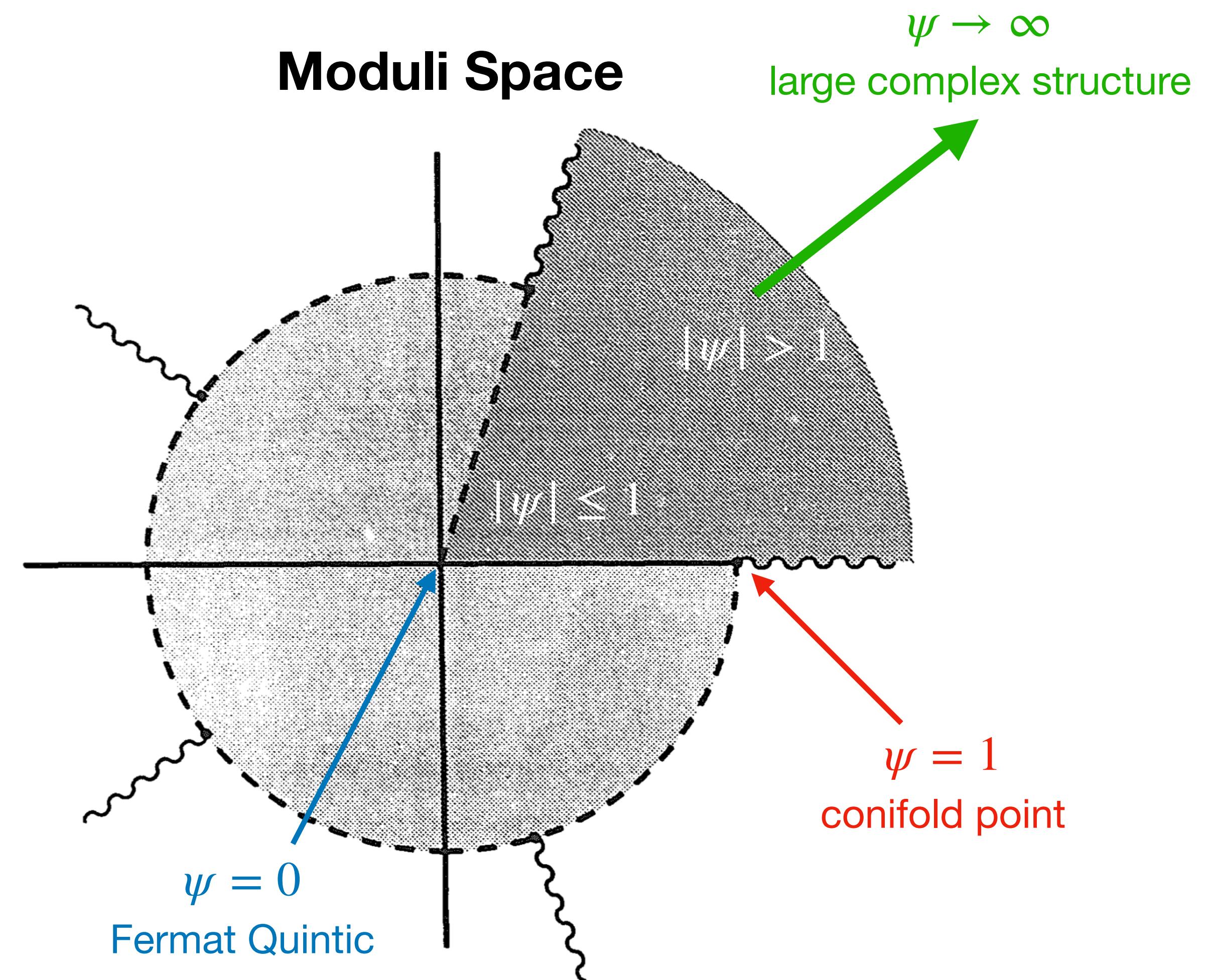
Manifold

$$p = \sum_{k=1}^5 x_k^5 - 5\psi \prod_{k=1}^5 x_k$$

Period Expansion $|\psi| < 1$

$$\varpi_0(\psi) = -\frac{1}{5} \sum_{m=1}^{\infty} \frac{\alpha^{2m} \Gamma(\frac{m}{5})(5\psi)^m}{\Gamma(m) \Gamma^4(1 - \frac{m}{5})}$$

Moduli Space



Mirror Quintic

Manifold

$$p = \sum_{k=1}^5 x_k^5 - 5\psi \prod_{k=1}^5 x_k$$

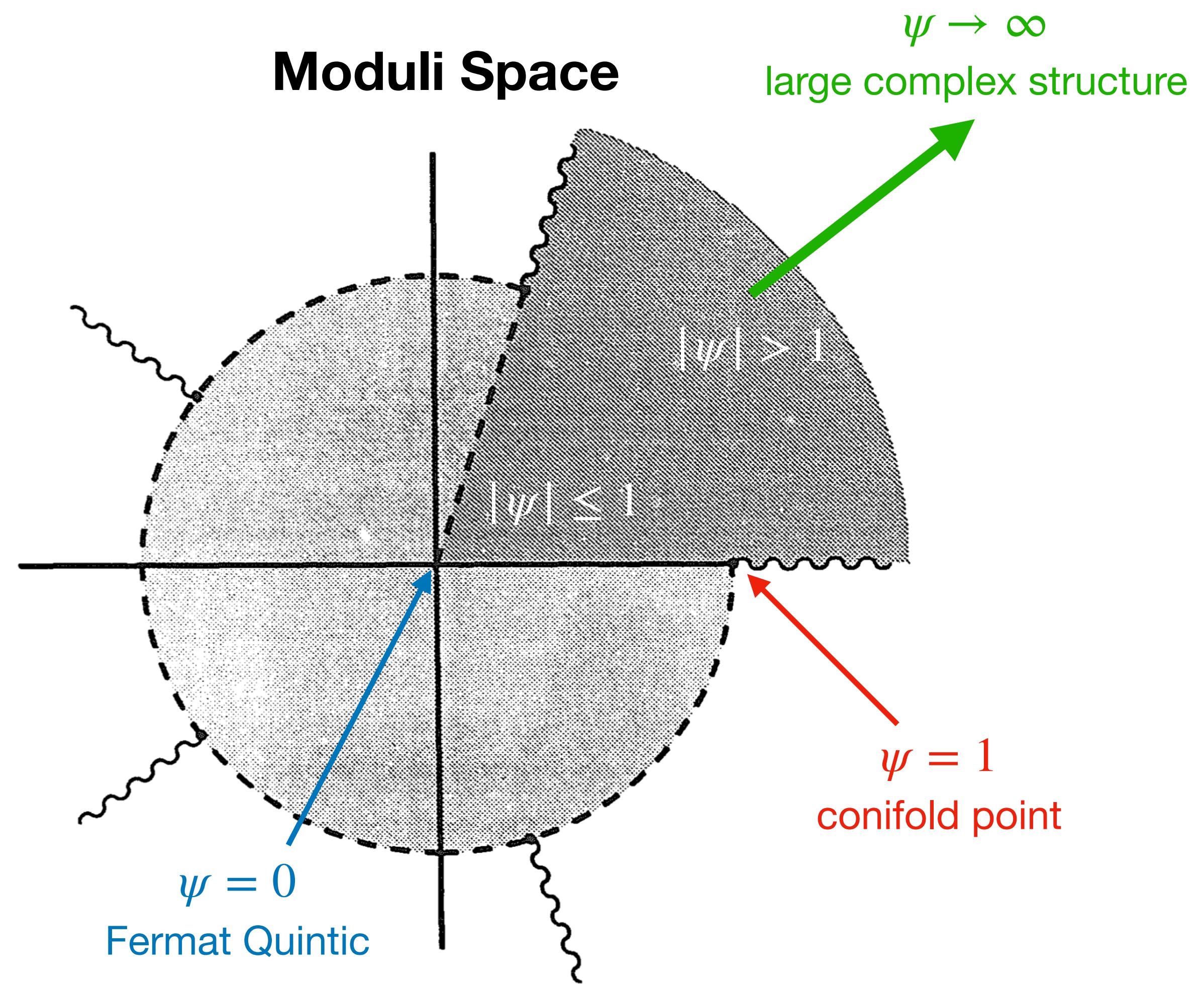
Period Expansion $|\psi| < 1$

$$\varpi_0(\psi) = -\frac{1}{5} \sum_{m=1}^{\infty} \frac{\alpha^{2m} \Gamma(\frac{m}{5})(5\psi)^m}{\Gamma(m) \Gamma^4(1 - \frac{m}{5})}$$

Period Expansion $|\psi| > 1$

$$\varpi_j(\psi) = \sum_{r=0}^3 \log^r(5\psi) \sum_{n=0}^{\infty} b_{jrn} \frac{(5n)!}{(n!)^5 (5\psi)^{5n}}$$

Moduli Space



Mirror Quintic

Period Expansion Basis

Period Expansion $|\psi| < 1$

$$\varpi_j(\psi) = -\frac{1}{5} \sum_{m=1}^{\infty} \frac{\alpha^{2m+mj} \Gamma(\frac{m}{5}) (5\psi)^m}{\Gamma(m) \Gamma^4(1 - \frac{m}{5})}$$

$$\varpi(\psi) = \begin{pmatrix} \varpi_2 \\ \varpi_1 \\ \varpi_0 \\ \vdots \\ \varpi_{k_1} \end{pmatrix} \rightarrow$$

Period Vector

$$\Pi = M\varpi$$

Mirror Quintic

Period Expansion Basis

Period Expansion $|\psi| < 1$

$$\varpi_j(\psi) = -\frac{1}{5} \sum_{m=1}^{\infty} \frac{\alpha^{2m+mj} \Gamma(\frac{m}{5}) (5\psi)^m}{\Gamma(m) \Gamma^4(1 - \frac{m}{5})}$$

$$\varpi(\psi) = \begin{pmatrix} \varpi_2 \\ \varpi_1 \\ \varpi_0 \\ \vdots \\ \varpi_{k_1} \end{pmatrix} \rightarrow$$

Period Vector

$$\Pi = M\varpi$$

Superpotential

$$W = w\mu^T \eta \Pi$$

Kähler potential

$$K = -\log \kappa$$

$$\kappa = -i\Pi^\dagger \eta \Pi$$

Mirror Quintic

Period Expansion $|\psi| < 1$

$$\varpi_j(\psi) = -\frac{1}{5} \sum_{m=1}^{\infty} \frac{\alpha^{2m+mj} \Gamma(\frac{m}{5}) (5\psi)^m}{\Gamma(m) \Gamma^4(1 - \frac{m}{5})}$$

Period Expansion Basis

$$\varpi(\psi) = \begin{pmatrix} \varpi_2 \\ \varpi_1 \\ \varpi_0 \\ \vdots \\ \varpi_{k_1} \end{pmatrix} \rightarrow$$

Period Vector

$$\Pi = M\varpi$$

Superpotential

$$W = w\mu^T \eta \Pi$$

Kähler potential

$$K = -\log \kappa$$

$$\kappa = -i\Pi^\dagger \eta \Pi$$

Global SUSY

$$\frac{\partial W}{\partial Z^a} = 0$$

Local SUSY

$$F_A = W_A - \frac{\kappa_A}{\kappa} W = 0$$

Mirror Quintic

Period Expansion $|\psi| < 1$

$$\varpi_j(\psi) = -\frac{1}{5} \sum_{m=1}^{\infty} \frac{\alpha^{2m+mj} \Gamma(\frac{m}{5}) (5\psi)^m}{\Gamma(m) \Gamma^4(1 - \frac{m}{5})}$$

Period Expansion Basis

$$\varpi(\psi) = \begin{pmatrix} \varpi_2 \\ \varpi_1 \\ \varpi_0 \\ \vdots \\ \varpi_{k_1} \end{pmatrix} \rightarrow$$

Period Vector

$$\Pi = M\varpi$$

Superpotential

$$W = w\mu^T \eta \Pi$$

Kähler potential

$$K = -\log \kappa$$

$$\kappa = -i\Pi^\dagger \eta \Pi$$

Global SUSY

$$\frac{\partial W}{\partial Z^a} = 0$$

Scalar potential

$$V = K^{A\bar{B}} D_A W D_{\bar{B}} \bar{W} - 3|W|^2$$

Local SUSY

$$F_A = W_A - \frac{\kappa_A}{\kappa} W = 0$$

Mirror Quintic

Global SUSY

- Scan all flux integers $(n_0, n_1, m^0, m^1) \in \{-20, \dots, 20\}$
- Solve for $\frac{\partial \hat{W}}{\partial \psi} = 0$
- Compute values of $|\hat{W}/w|$
- Best one obtained - $|\hat{W}/w| \sim 0.064$ at $(n_0, n_1, m^0, m^1) = \pm (5, -2, 9, -4)$ and $\psi = -0.55 - 0.25i$.
- \hat{W} not symplectically-invariant under $Sp(4, \mathbb{Z})$!

Mirror Quintic Local SUSY

- Instead look at quantity

$$\mathcal{V} = e^{K/2} \hat{W}$$

- Repeat search for F-term set to zero,

$$F_a = W_a - \frac{\kappa_a}{\kappa} W$$

- Use solution ψ_0 which obeys $|\psi_0| \leq 1$ to compute \mathcal{V} .

Mirror Quintic Local SUSY

- Instead look at quantity

$$\mathcal{V} = e^{K/2} \hat{W}$$

- Repeat search for F-term set to zero,

$$F_a = W_a - \frac{\kappa_a}{\kappa} W$$

- Use solution ψ_0 which obeys $|\psi_0| \leq 1$ to compute \mathcal{V} .

Found Minima

- $(n_0, n_1, m^0, m^1) = (4, 0, 7, -1)$
- $\psi_{\min} = 0.12 - 0.36i$
- $\mathcal{V}_{\min} \sim 1.25$

Mirror Quintic Local SUSY

- Instead look at quantity

$$\mathcal{V} = e^{K/2} \hat{W}$$

- Repeat search for F-term set to zero,

$$F_a = W_a - \frac{\kappa_a}{\kappa} W$$

- Use solution ψ_0 which obeys $|\psi_0| \leq 1$ to compute \mathcal{V} .

Found Minima

- $(n_0, n_1, m^0, m^1) = (4, 0, 7, -1)$
- $\psi_{\min} = 0.12 - 0.36i$
- $\mathcal{V}_{\min} \sim 1.25$



Mirror Quintic Local SUSY

- Instead look at quantity

$$\mathcal{V} = e^{K/2} \hat{W}$$

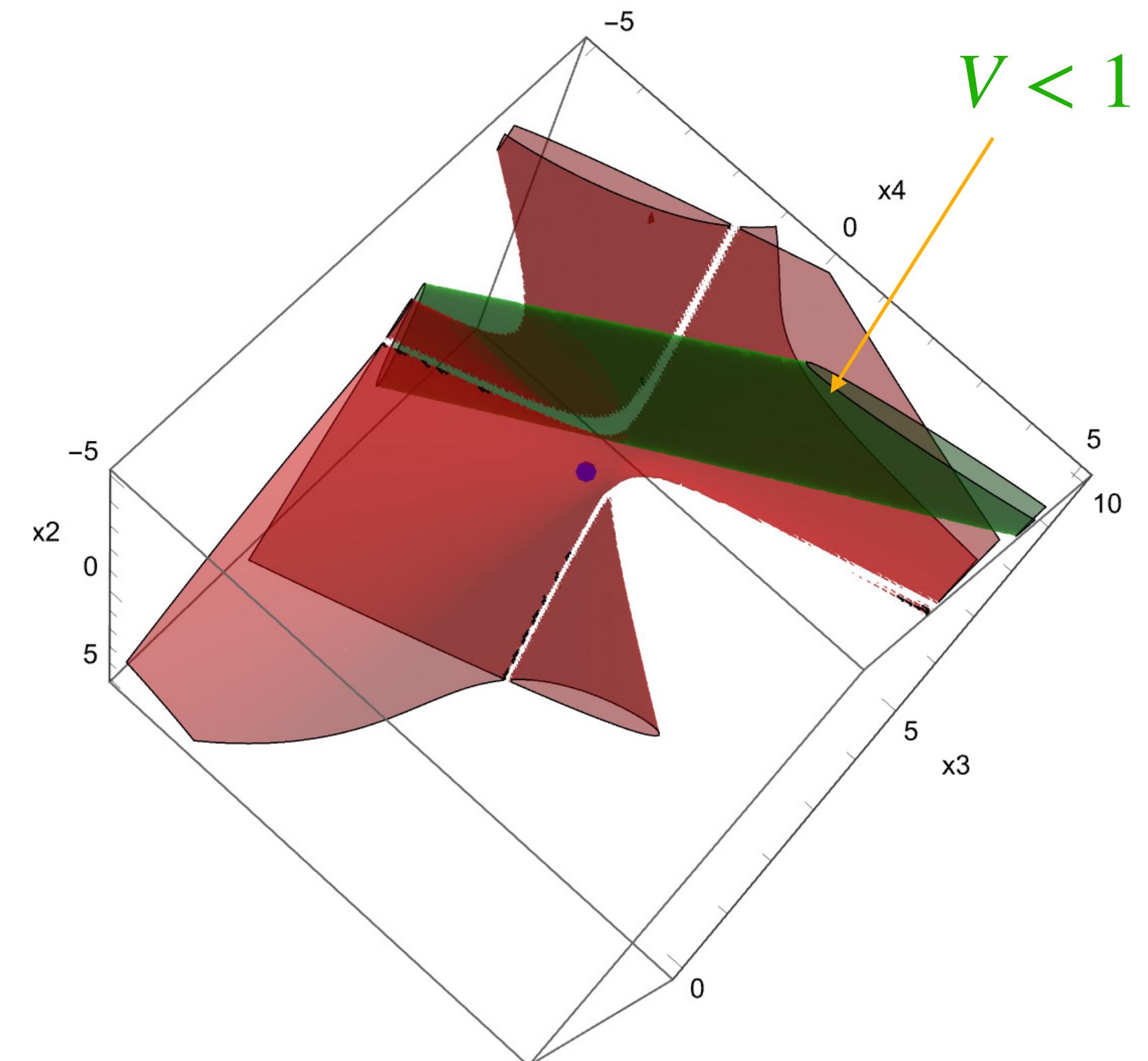
- Repeat search for F-term set to zero,

$$F_a = W_a - \frac{\kappa_a}{\kappa} W$$

- Use solution ψ_0 which obeys $|\psi_0| \leq 1$ to compute \mathcal{V} .

Found Minima

- $(n_0, n_1, m^0, m^1) = (4, 0, 7, -1)$
- $\psi_{\min} = 0.12 - 0.36i$
- $\mathcal{V}_{\min} \sim 1.25$



Mirror Quintic Local SUSY

- Instead look at quantity

$$\mathcal{V} = e^{K/2} \hat{W}$$

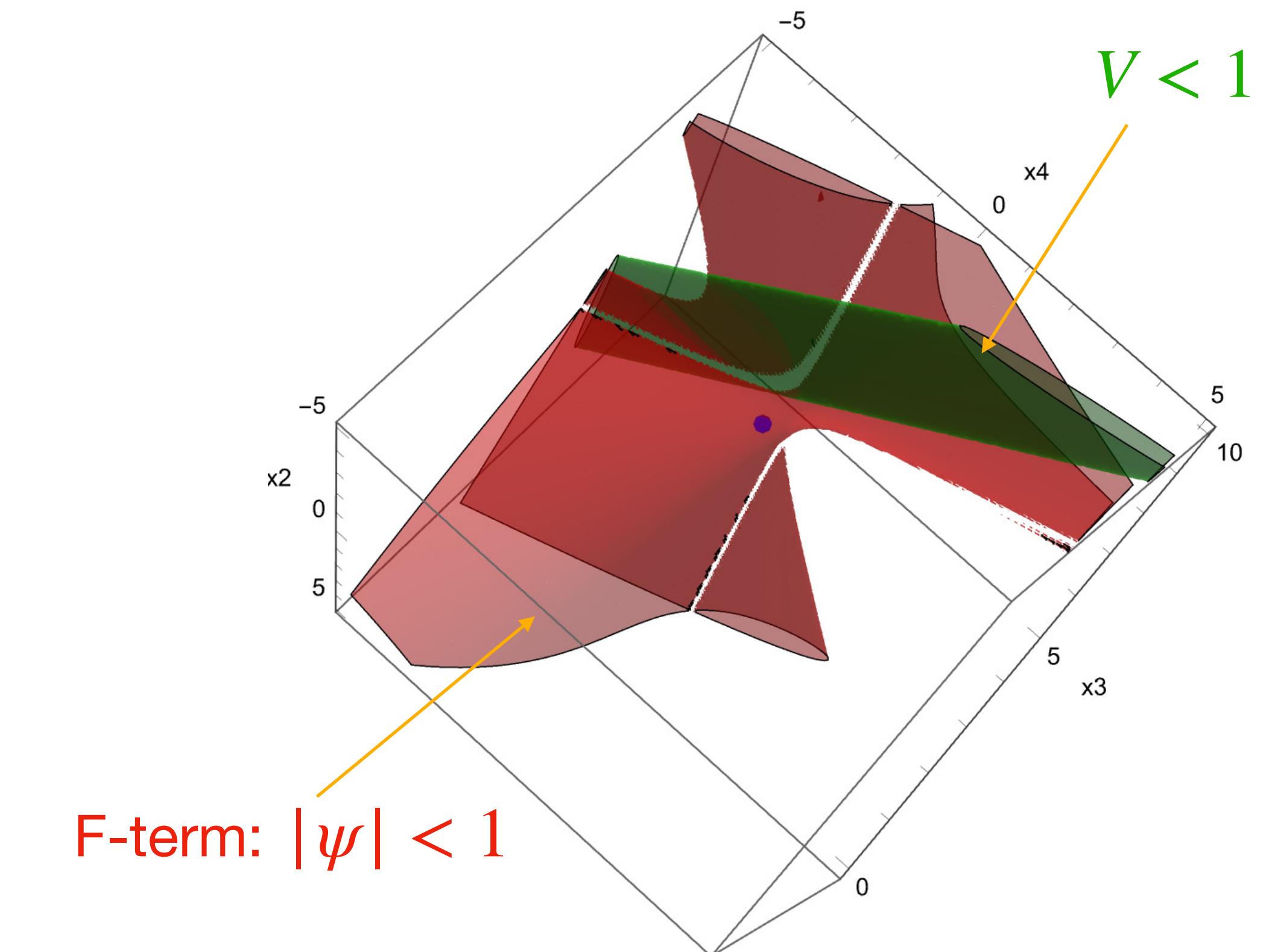
- Repeat search for F-term set to zero,

$$F_a = W_a - \frac{\kappa_a}{\kappa} W$$

- Use solution ψ_0 which obeys $|\psi_0| \leq 1$ to compute \mathcal{V} .

Found Minima

- $(n_0, n_1, m^0, m^1) = (4, 0, 7, -1)$
- $\psi_{\min} = 0.12 - 0.36i$
- $\mathcal{V}_{\min} \sim 1.25$



Mirror Quintic Local SUSY

- Instead look at quantity

$$\mathcal{V} = e^{K/2} \hat{W}$$

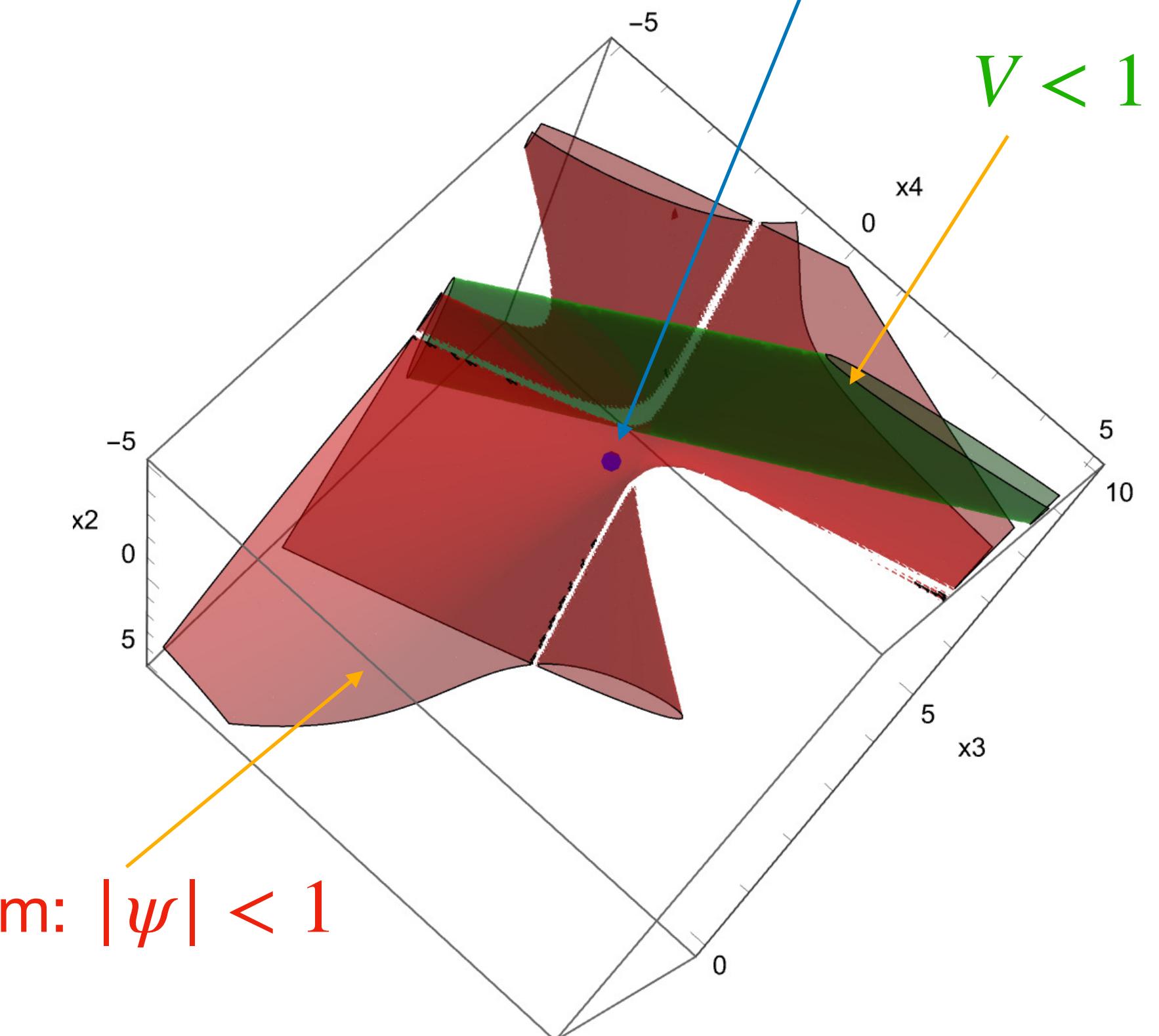
- Repeat search for F-term set to zero,

$$F_a = W_a - \frac{\kappa_a}{\kappa} W$$

- Use solution ψ_0 which obeys $|\psi_0| \leq 1$ to compute \mathcal{V} .

Found Minima

- $(n_0, n_1, m^0, m^1) = (4, 0, 7, -1)$
- $\psi_{\min} = 0.12 - 0.36i$
- $\mathcal{V}_{\min} \sim 1.25$



Fermat-type One-parameter Models

Fermat-type One-parameter Models

Manifolds

$$k = 5 : M = \{x_i \in \mathbb{P}_{1,1,1,1,1} \mid M_0 = x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = 0\}$$

$$k = 6 : M = \{x_i \in \mathbb{P}_{2,1,1,1,1} \mid M_0 = 2x_0^3 + x_1^6 + x_2^6 + x_3^6 + x_4^6 = 0\}$$

$$k = 8 : M = \{x_i \in \mathbb{P}_{4,1,1,1,1} \mid M_0 = 4x_0^2 + x_1^8 + x_2^8 + x_3^8 + x_4^8 = 0\}$$

$$k = 10 : M = \{x_i \in \mathbb{P}_{5,2,1,1,1} \mid M_0 = 5x_0^2 + 2x_1^5 + x_2^{10} + x_3^{10} + x_4^{10} = 0\}$$

Fermat-type One-parameter Models

Manifolds

$$k = 5 : M = \{x_i \in \mathbb{P}_{1,1,1,1,1} \mid M_0 = x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = 0\}$$

$$k = 6 : M = \{x_i \in \mathbb{P}_{2,1,1,1,1} \mid M_0 = 2x_0^3 + x_1^6 + x_2^6 + x_3^6 + x_4^6 = 0\}$$

$$k = 8 : M = \{x_i \in \mathbb{P}_{4,1,1,1,1} \mid M_0 = 4x_0^2 + x_1^8 + x_2^8 + x_3^8 + x_4^8 = 0\}$$

$$k = 10 : M = \{x_i \in \mathbb{P}_{5,2,1,1,1} \mid M_0 = 5x_0^2 + 2x_1^5 + x_2^{10} + x_3^{10} + x_4^{10} = 0\}$$

Period Expressions

$$\varpi_0(\psi) = -\frac{\pi}{k} \sum_{n=1}^{\infty} \frac{1}{\Gamma(n) \prod_{i=0}^4 \Gamma(1 - n\nu_i/k)} \frac{e^{\frac{i\pi(k-1)n}{k}}}{\sin\left(\frac{\pi n}{k}\right)} (\gamma\psi)^n,$$

Fermat-type One-parameter Models

Manifolds

$k = 5 : M = \{x_i \in \mathbb{P}_{1,1,1,1,1} \mid M_0 = x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = 0\}$
 $k = 6 : M = \{x_i \in \mathbb{P}_{2,1,1,1,1} \mid M_0 = 2x_0^3 + x_1^6 + x_2^6 + x_3^6 + x_4^6 = 0\}$
 $k = 8 : M = \{x_i \in \mathbb{P}_{4,1,1,1,1} \mid M_0 = 4x_0^2 + x_1^8 + x_2^8 + x_3^8 + x_4^8 = 0\}$
 $k = 10 : M = \{x_i \in \mathbb{P}_{5,2,1,1,1} \mid M_0 = 5x_0^2 + 2x_1^5 + x_2^{10} + x_3^{10} + x_4^{10} = 0\}$

Period Expressions

$$\varpi_0(\psi) = -\frac{\pi}{k} \sum_{n=1}^{\infty} \frac{1}{\Gamma(n) \prod_{i=0}^4 \Gamma(1 - n\nu_i/k)} \frac{e^{\frac{i\pi(k-1)n}{k}}}{\sin\left(\frac{\pi n}{k}\right)} (\gamma\psi)^n,$$

Results

k	(n_0, n_1, m^0, m^1)	ψ_{\min}	V_F	$ W_{\text{homo}} $	$ \hat{\mathcal{W}}_0 $	$ \hat{\mathcal{W}}_1 $
6	(-1, 1, 7, 0)	$0.392 + 0.679i$	7.01	11.1	0.655	2.98
6	(-2, 2, -11, 3)	$-0.392 - 0.679i$	7.01	11.1	0.421	1.55
6	(0, -2, 5, 0)	$-0.785 - 0.0000226i$	7.01	11.1	0.423	1.49
8	(-2, -1, -1, 1)	$0.250 - 0.250i$	25.5	8.55	191	1260
8	(0, -1, 4, 0)	$0.801 + 0.0000136i$	8.54	11.1	121	2510
8	(-2, 1, -6, 2)	$0.000463 - 0.802i$	8.54	11.1	99.5	364
10	(2, -1, -1, -1)	$-0.585 - 0.806i$	2.79	9.61	1.42	2.19

Fermat-type One-parameter Models

Manifolds

- $k = 5 : M = \{x_i \in \mathbb{P}_{1,1,1,1,1} \mid M_0 = x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = 0\}$
- $k = 6 : M = \{x_i \in \mathbb{P}_{2,1,1,1,1} \mid M_0 = 2x_0^3 + x_1^6 + x_2^6 + x_3^6 + x_4^6 = 0\}$
- $k = 8 : M = \{x_i \in \mathbb{P}_{4,1,1,1,1} \mid M_0 = 4x_0^2 + x_1^8 + x_2^8 + x_3^8 + x_4^8 = 0\}$
- $k = 10 : M = \{x_i \in \mathbb{P}_{5,2,1,1,1} \mid M_0 = 5x_0^2 + 2x_1^5 + x_2^{10} + x_3^{10} + x_4^{10} = 0\}$

Period Expressions

$$\varpi_0(\psi) = -\frac{\pi}{k} \sum_{n=1}^{\infty} \frac{1}{\Gamma(n) \prod_{i=0}^4 \Gamma(1 - n\nu_i/k)} \frac{e^{\frac{i\pi(k-1)n}{k}}}{\sin\left(\frac{\pi n}{k}\right)} (\gamma\psi)^n,$$

Results

k	(n_0, n_1, m^0, m^1)	ψ_{\min}	V_F	$ W_{\text{homo}} $	$ \hat{\mathcal{W}}_0 $	$ \hat{\mathcal{W}}_1 $
6	(-1, 1, 7, 0)	$0.392 + 0.679i$	7.01	11.1	0.655	2.98
6	(-2, 2, -11, 3)	$-0.392 - 0.679i$	7.01	11.1	0.421	1.55
6	(0, -2, 5, 0)	$-0.785 - 0.0000226i$	7.01	11.1	0.423	1.49
8	(-2, -1, -1, 1)	$0.250 - 0.250i$	25.5	8.55	191	1260
8	(0, -1, 4, 0)	$0.801 + 0.0000136i$	8.54	11.1	121	2510
8	(-2, 1, -6, 2)	$0.000463 - 0.802i$	8.54	11.1	99.5	364
10	(2, -1, -1, -1)	$-0.585 - 0.806i$	2.79	9.61	1.42	2.19

Not amazing...

Two-parameter Model

Two-parameter Model

Manifold

$$p = x_1^8 + x_2^8 + x_3^4 + x_4^4 + x_5^4 - 8\psi x_1 x_2 x_3 x_4 x_5 - 2\phi x_1^4 x_2^4$$

Two-parameter Model

Manifold

$$p = x_1^8 + x_2^8 + x_3^4 + x_4^4 + x_5^4 - 8\psi x_1 x_2 x_3 x_4 x_5 - 2\phi x_1^4 x_2^4$$

Period Expansion in $\left| \frac{8\zeta^4}{1 \pm \sqrt{\eta}} \right| < 1$

$$\varpi_j(\zeta, \eta) = -\frac{1}{4} \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \alpha^{mj} \Delta(m) \Xi(k) \zeta^m \eta^k$$

Two-parameter Model

Manifold

$$p = x_1^8 + x_2^8 + x_3^4 + x_4^4 + x_5^4 - 8\psi x_1 x_2 x_3 x_4 x_5 - 2\phi x_1^4 x_2^4$$

Period Expansion in $\left| \frac{8\zeta^4}{1 \pm \sqrt{\eta}} \right| < 1$

$$\varpi_j(\zeta, \eta) = -\frac{1}{4} \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \alpha^{mj} \Delta(m) \Xi(k) \zeta^m \eta^k$$

Results

Region	$(n_0, n_1, n_2, m^0, m^1, m^2)$	$(\psi_{\min}, \phi_{\min})$	V_F	$ W_{\text{homo}} $
$\left \frac{8\zeta^4}{1 \pm \sqrt{\eta}} \right < 1$	$(1, 2, -3, -1, 1, -2)$	$(-0.160 + 0.555i, 0.069 - 0.844i)$	0.001579	0.0287

Two-parameter Model

Manifold

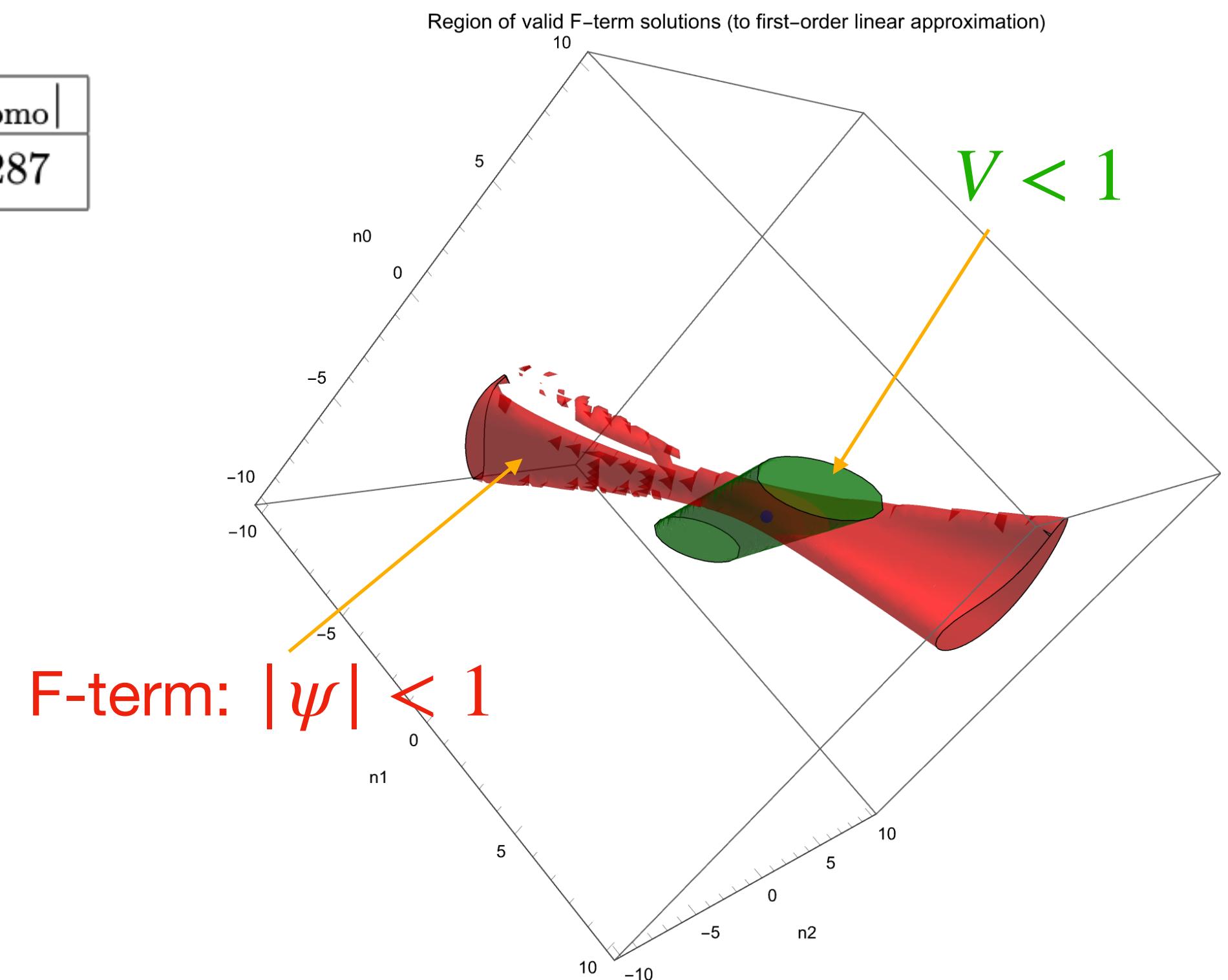
$$p = x_1^8 + x_2^8 + x_3^4 + x_4^4 + x_5^4 - 8\psi x_1 x_2 x_3 x_4 x_5 - 2\phi x_1^4 x_2^4$$

Period Expansion in $\left| \frac{8\zeta^4}{1 \pm \sqrt{\eta}} \right| < 1$

$$\varpi_j(\zeta, \eta) = -\frac{1}{4} \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \alpha^{mj} \Delta(m) \Xi(k) \zeta^m \eta^k$$

Results

Region	$(n_0, n_1, n_2, m^0, m^1, m^2)$	$(\psi_{\min}, \phi_{\min})$	V_F	$ W_{\text{homo}} $
$\left \frac{8\zeta^4}{1 \pm \sqrt{\eta}} \right < 1$	$(1, 2, -3, -1, 1, -2)$	$(-0.160 + 0.555i, 0.069 - 0.844i)$	0.001579	0.0287



Two-parameter Model

Manifold

$$p = x_1^8 + x_2^8 + x_3^4 + x_4^4 + x_5^4 - 8\psi x_1 x_2 x_3 x_4 x_5 - 2\phi x_1^4 x_2^4$$

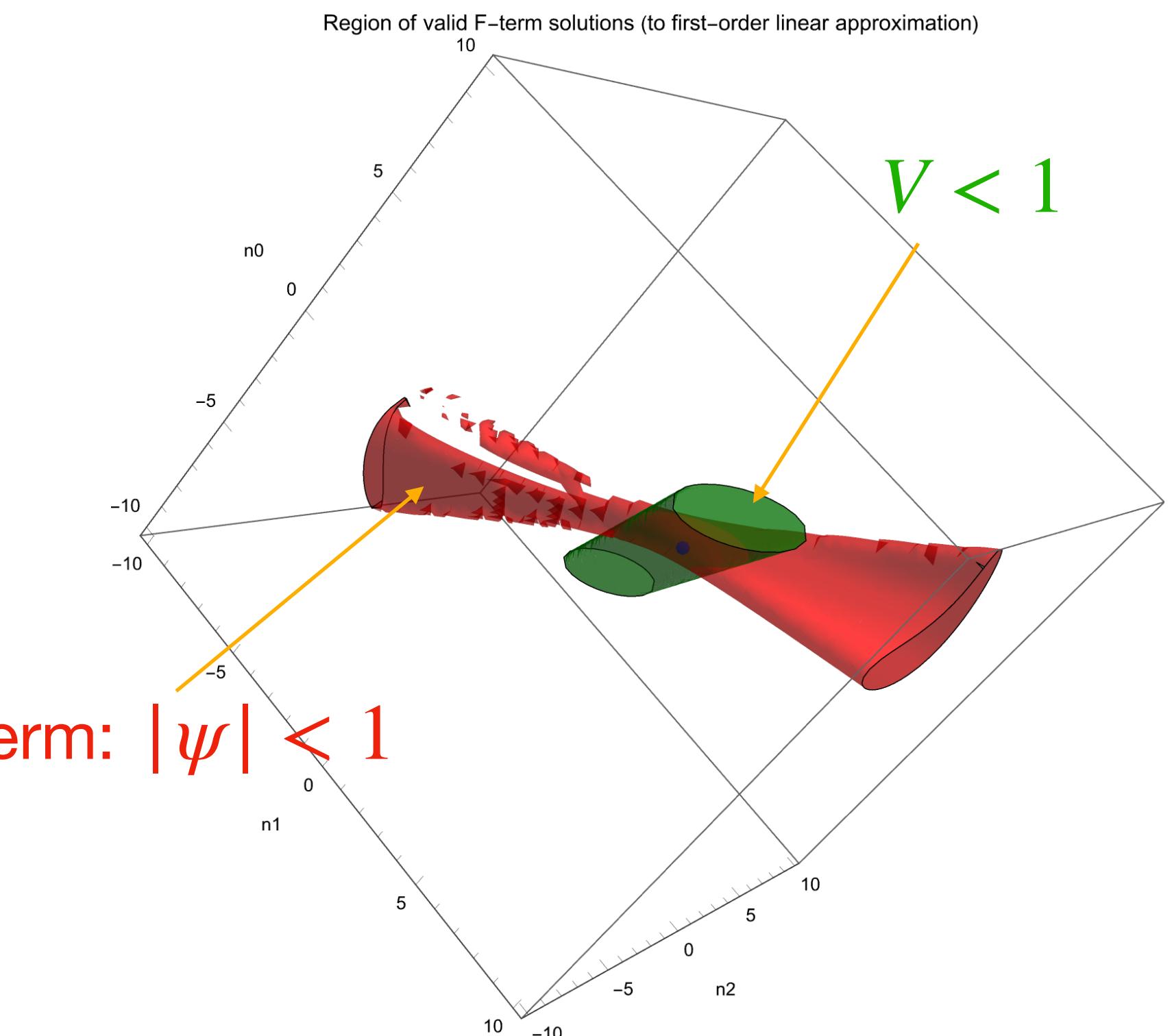
Results

Region	$(n_0, n_1, n_2, m^0, m^1, m^2)$	$(\psi_{\min}, \phi_{\min})$	V_F	$ W_{\text{homo}} $
$ \frac{8\zeta^4}{1\pm\sqrt{\eta}} < 1$	$(1, 2, -3, -1, 1, -2)$	$(-0.160 + 0.555i, 0.069 - 0.844i)$	0.001579	0.0287

small W_0 seems possible!

Period Expansion in $\left| \frac{8\zeta^4}{1 \pm \sqrt{\eta}} \right| < 1$

$$\varpi_j(\zeta, \eta) = -\frac{1}{4} \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \alpha^{mj} \Delta(m) \Xi(k) \zeta^m \eta^k$$



Conclusions

- Want to see if we can repeat KKLT-like scenario in heterotic string theory.
- No RR fluxes in heterotic means small- W_0 argument is not possible in heterotic.
- But W_0 seems possible in some models - need specific period structure!
- **Constraints on period structure can be in principle be derived!**

The Dream Scenario

The Dream Scenario

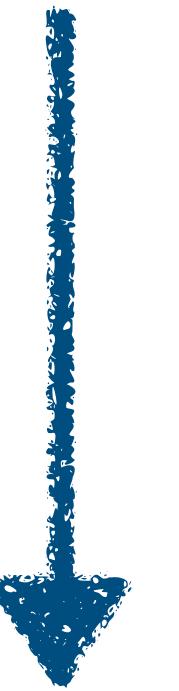
UV action

$$S_{UV} = \int Dx \dots$$

The Dream Scenario

UV action

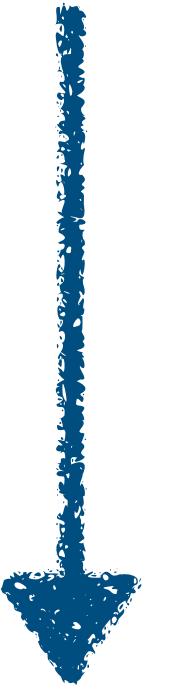
$$S_{UV} = \int Dx \dots$$



The Dream Scenario

UV action

$$S_{\text{UV}} = \int Dx \dots$$



4d effective action

$$S_{\text{4d}} = \int d^4x R + \dots$$

The Dream Scenario

$$S_{\text{UV}} = \int Dx \dots$$

UV action

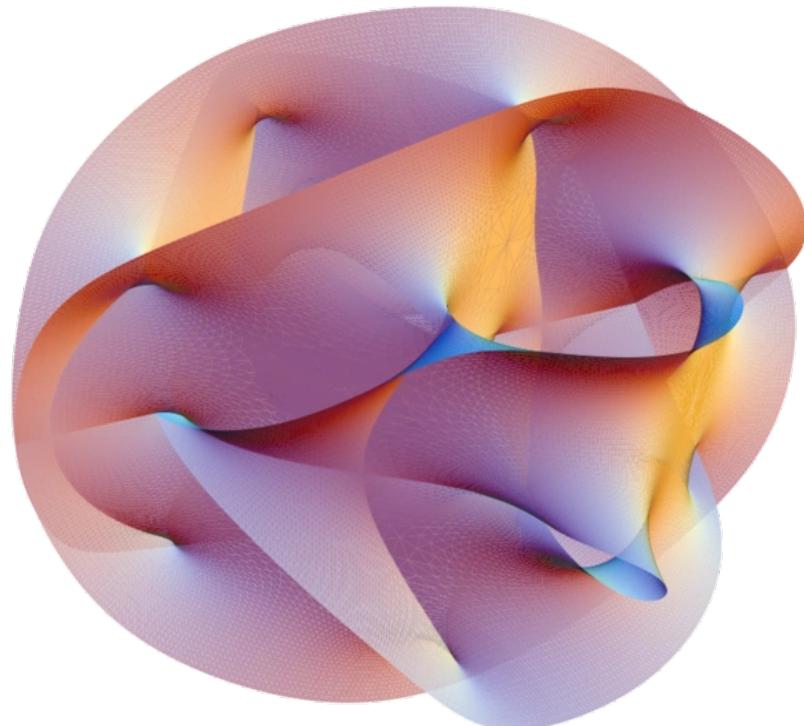
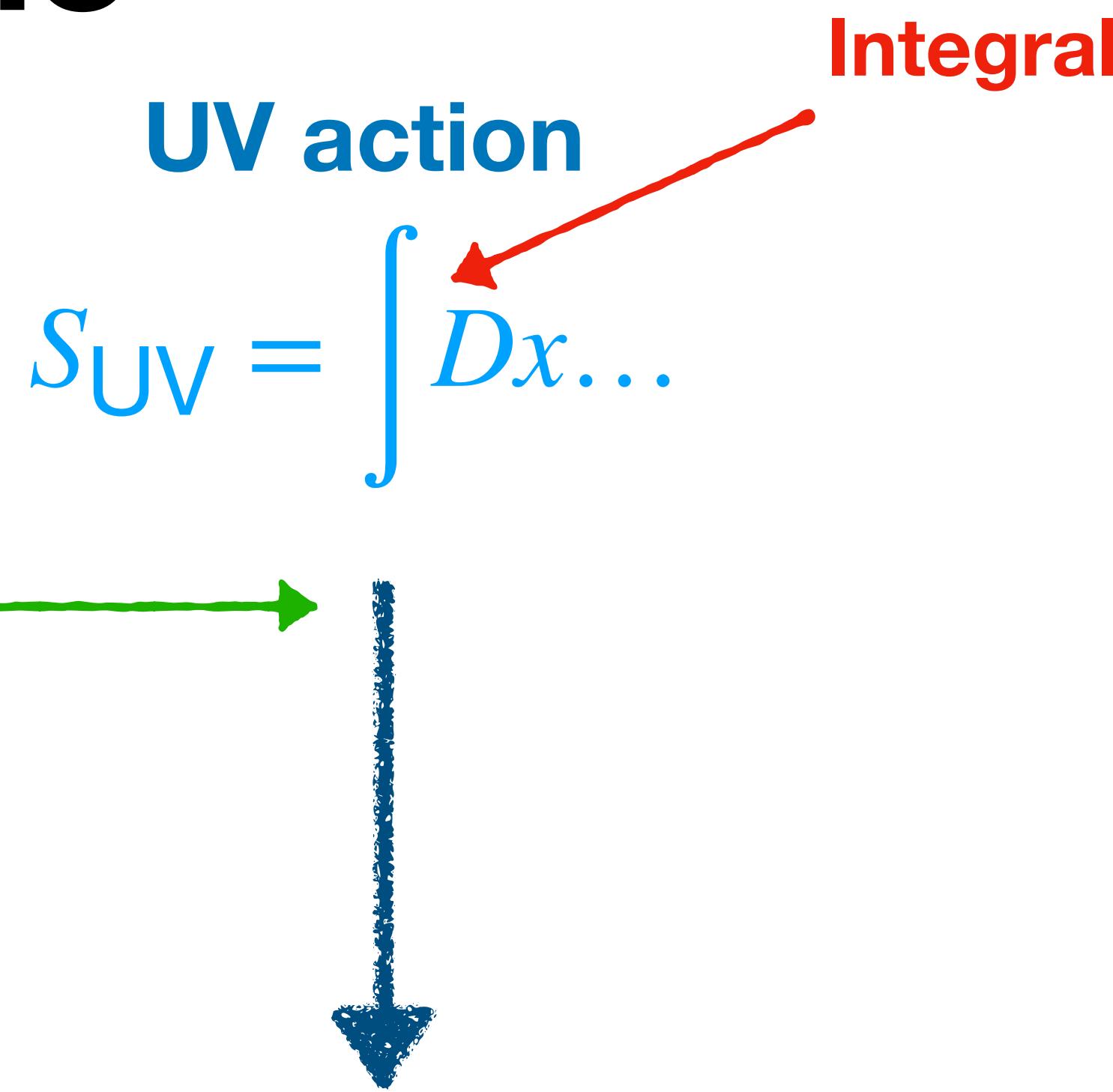
Integral

4d effective action

$$S_{\text{4d}} = \int d^4x R + \dots$$

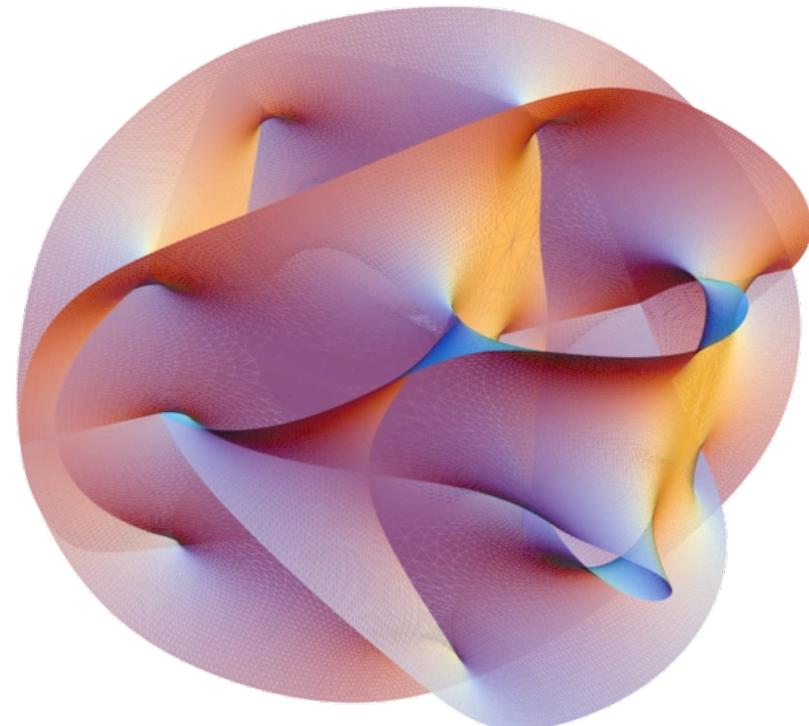
The Dream Scenario

Calabi-Yau Data
(geometry + topology)



The Dream Scenario

Calabi-Yau Data
(geometry + topology)



UV action

$$S_{\text{UV}} = \int Dx \dots$$

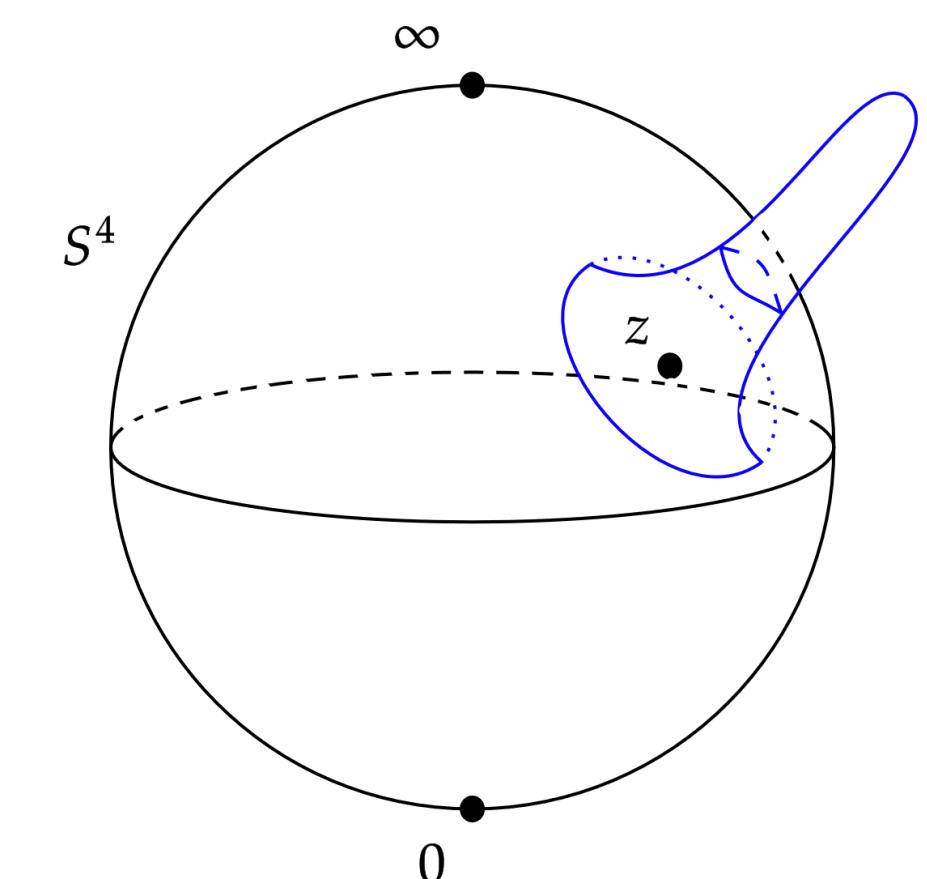
Integral

↓

4d effective action

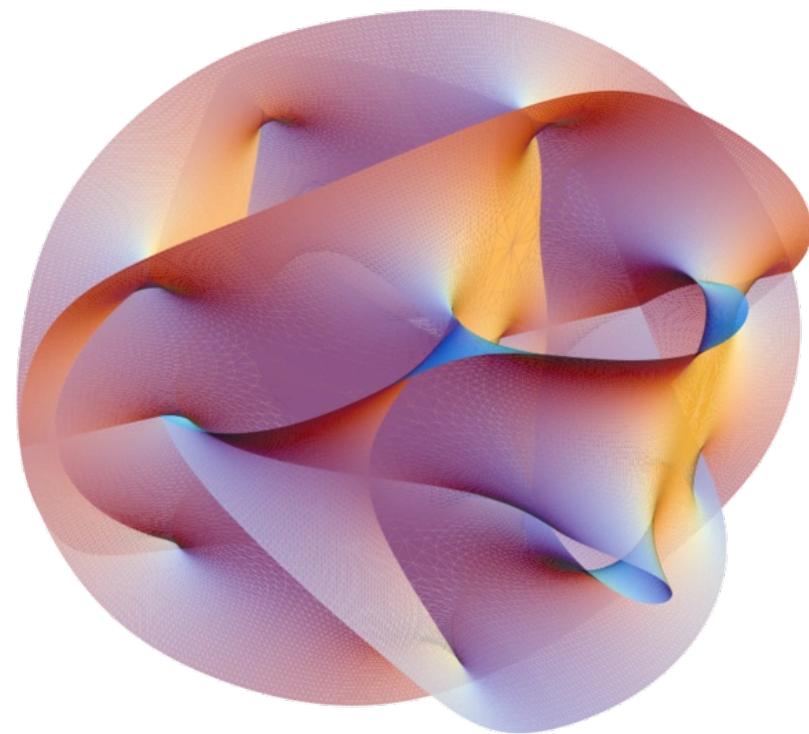
$$S_{\text{4d}} = \int d^4x R + \dots$$

Non-perturbative effects

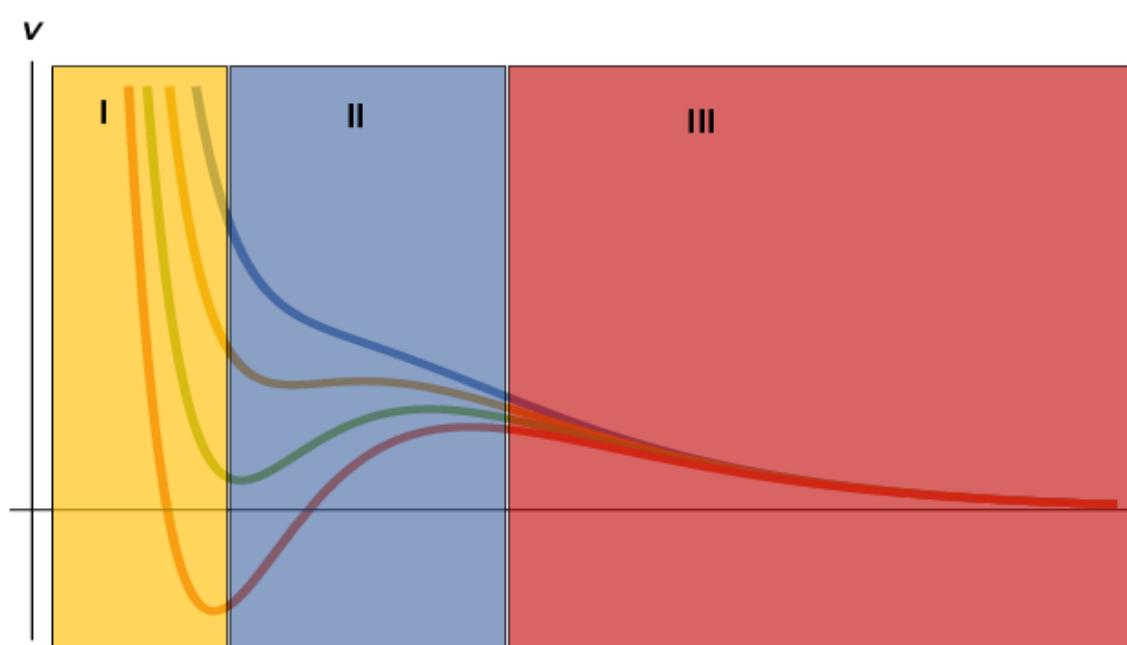


The Dream Scenario

Calabi-Yau Data
(geometry + topology)



Moduli Stabilisation



UV action

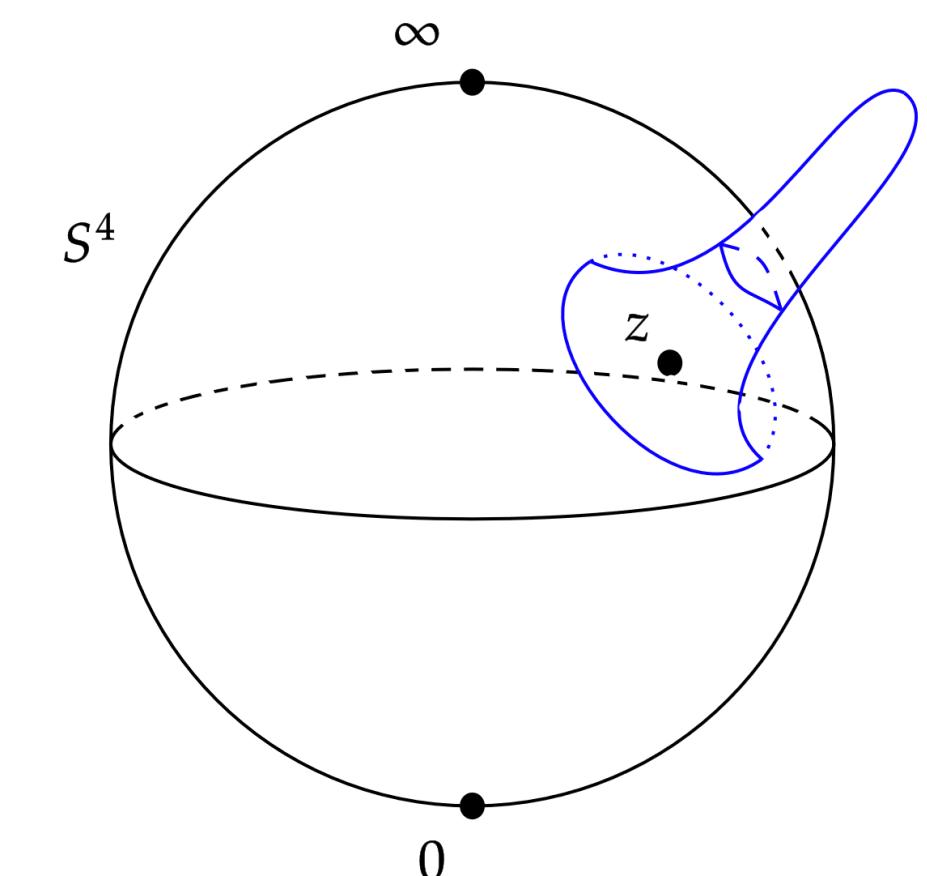
$$S_{\text{UV}} = \int Dx \dots$$

Integral

4d effective action

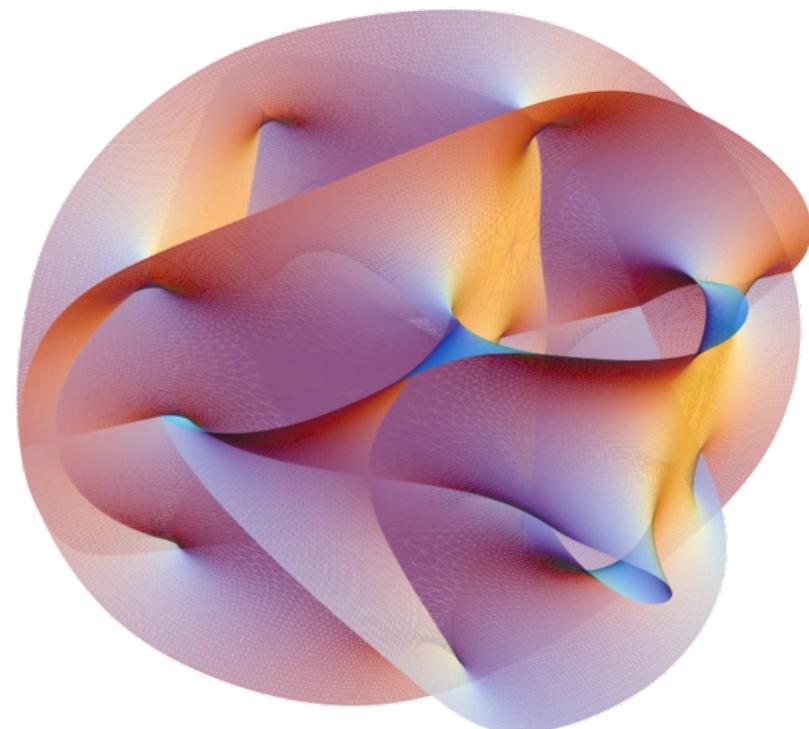
$$S_{\text{4d}} = \int d^4x R + \dots$$

Non-perturbative effects

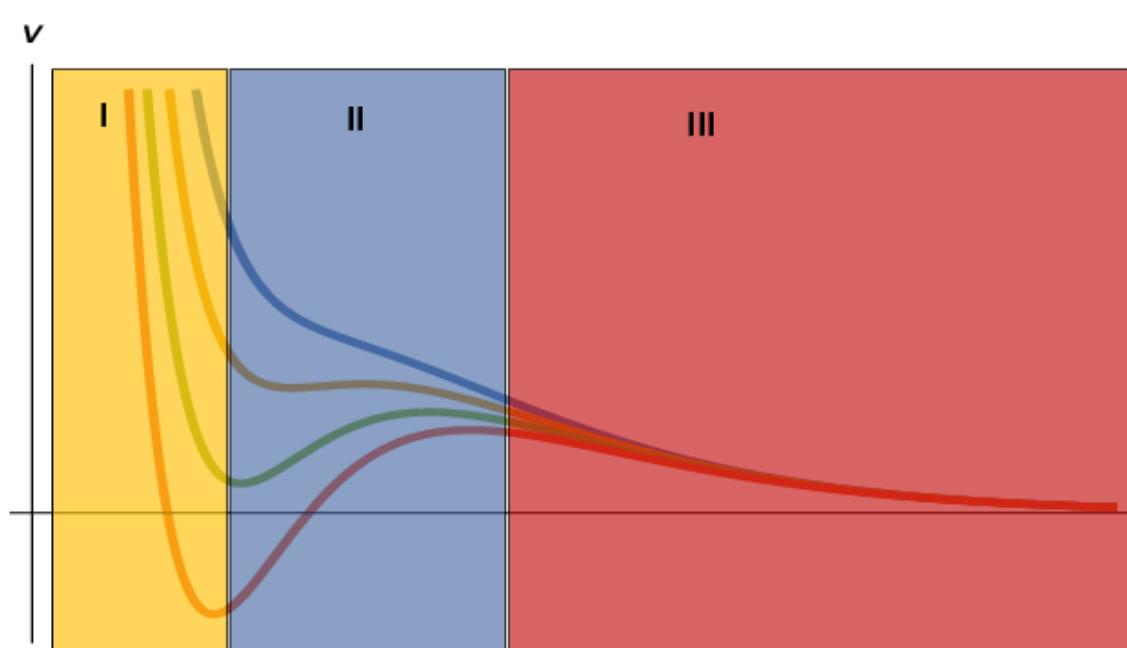


The Dream Scenario

Calabi-Yau Data
(geometry + topology)



Moduli Stabilisation



UV action

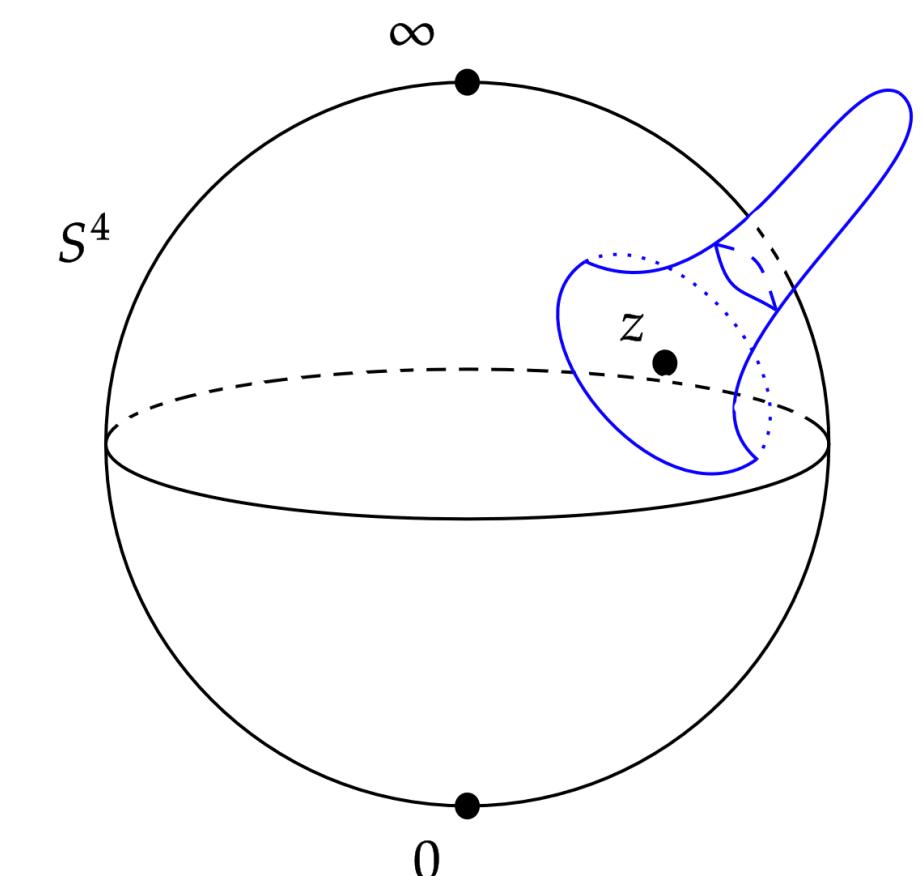
$$S_{\text{UV}} = \int Dx \dots$$

Integral

4d effective action

$$S_{\text{4d}} = \int d^4x R + \dots$$

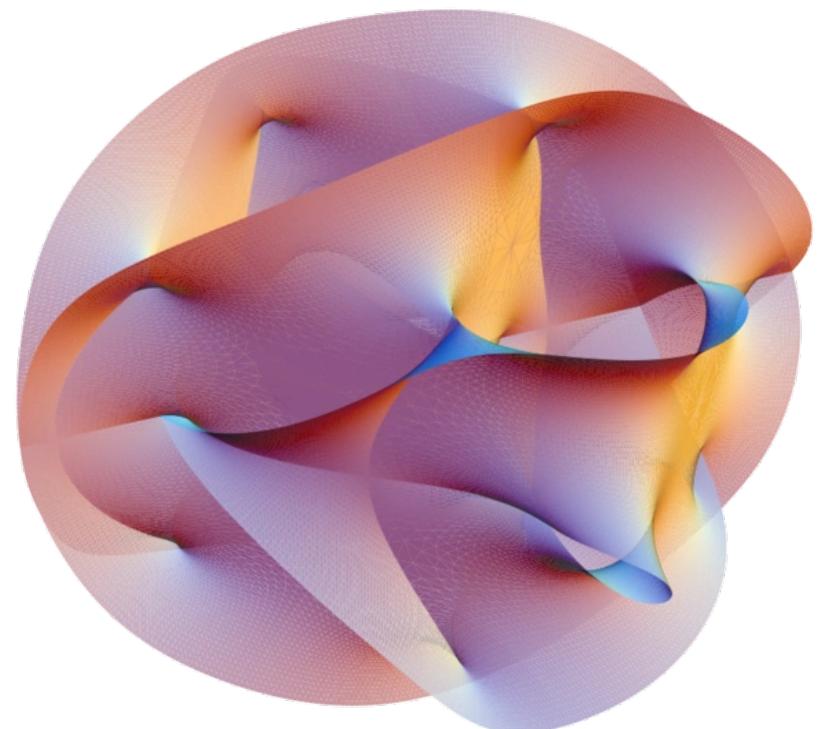
Non-perturbative effects



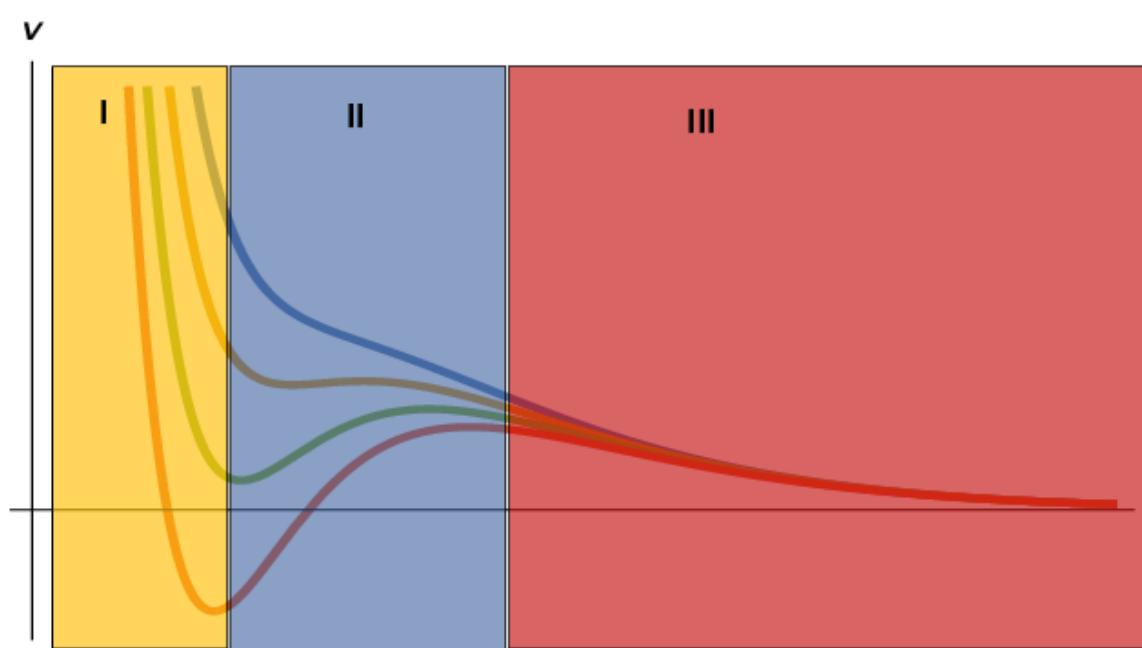
SUSY

The Dream Scenario

Calabi-Yau Data
(geometry + topology)



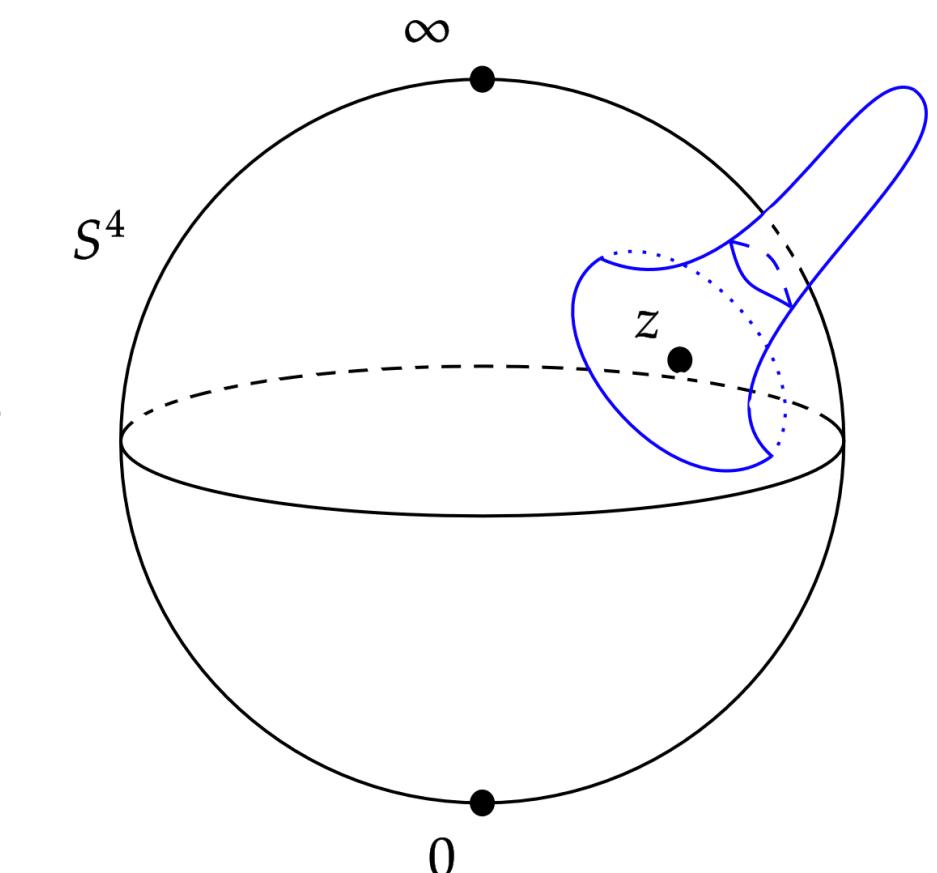
Moduli Stabilisation



UV action

$$S_{UV} = \int Dx \dots$$

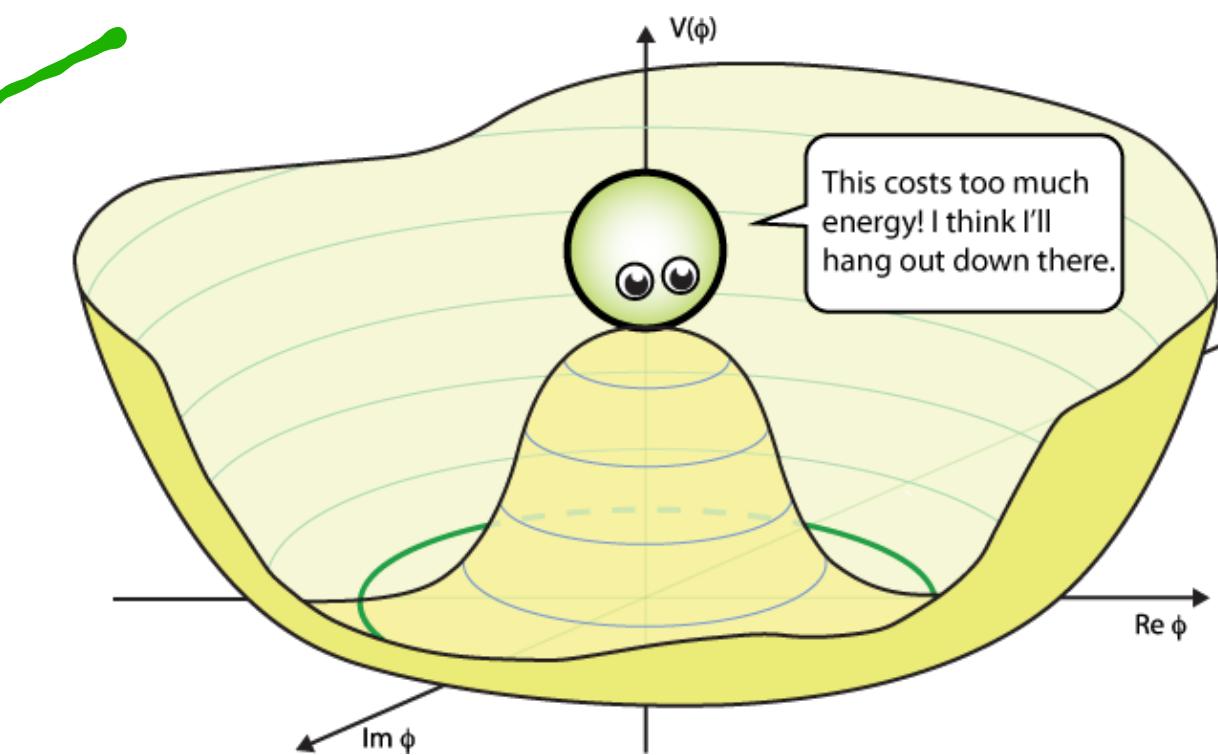
Integral



4d effective action

$$S_{4d} = \int d^4x R + \dots$$

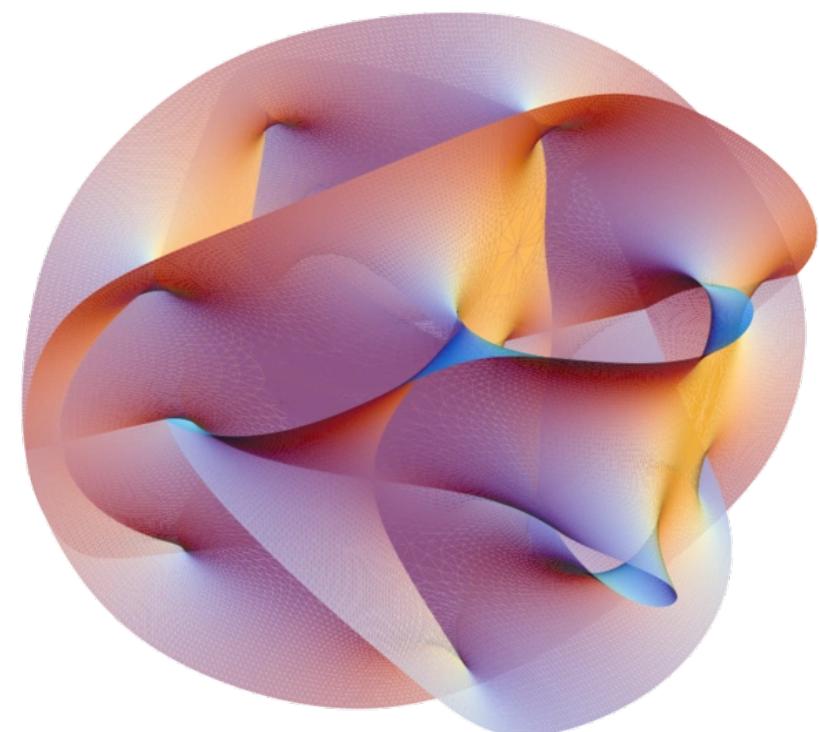
Electroweak Physics



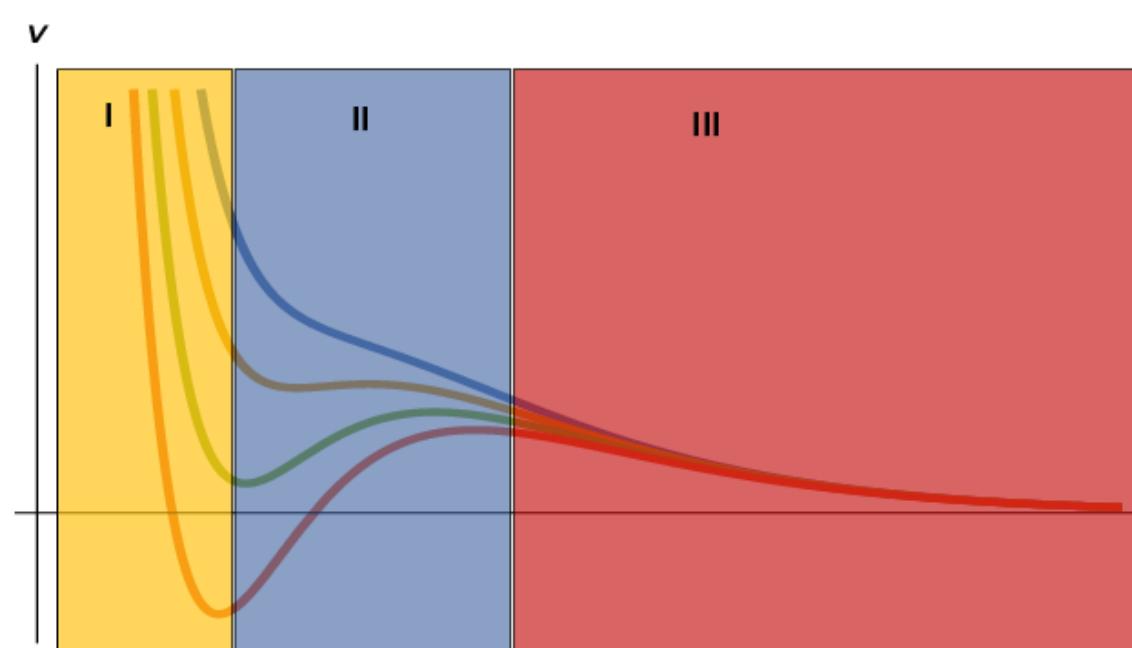
Non-perturbative effects

The Dream Scenario

Calabi-Yau Data
(geometry + topology)



Moduli Stabilisation



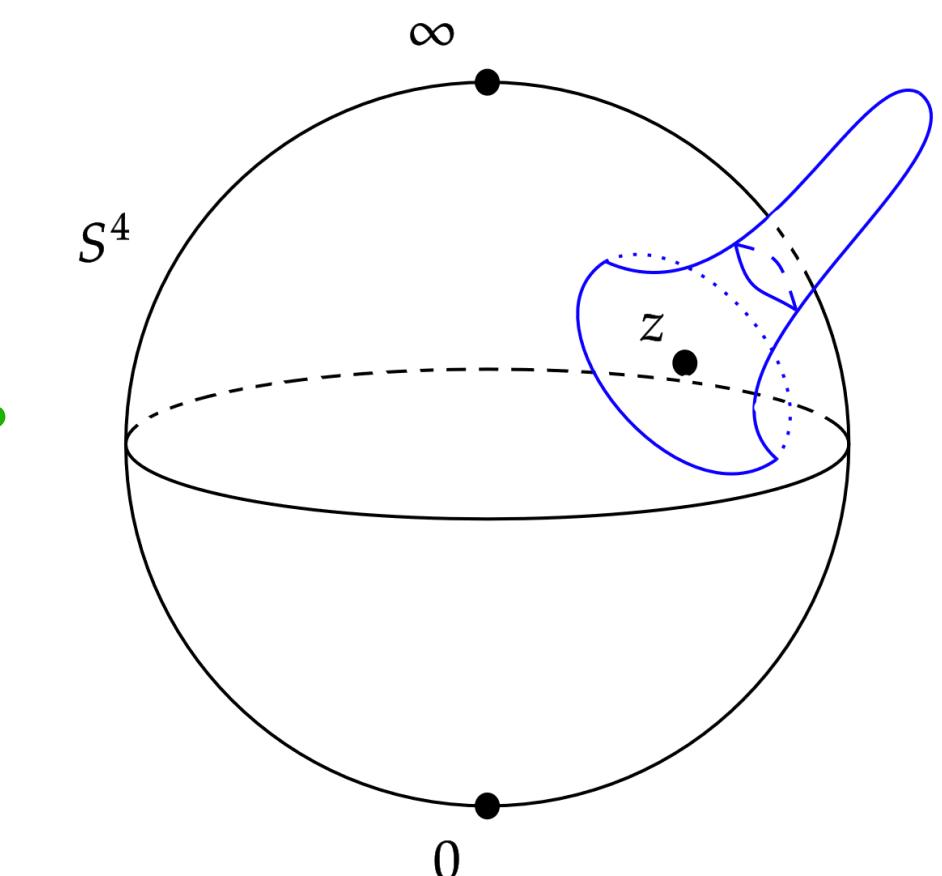
String Phenomenology

UV action

$$S_{UV} = \int Dx \dots$$

Integral

Non-perturbative effects

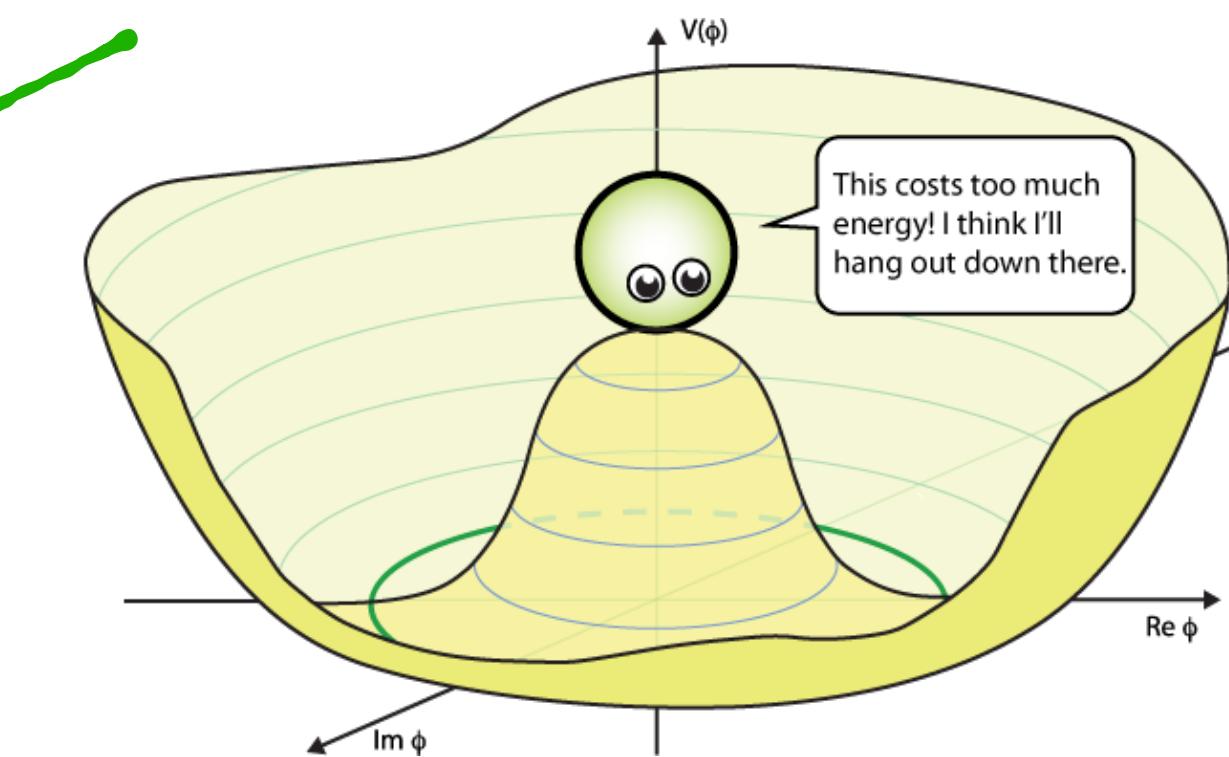


SUSY

4d effective action

$$S_{4d} = \int d^4x R + \dots$$

Electroweak Physics



Outlook

- There is a lot more to do in string theory!
- **String model building is still hard - many computational and algebraic techniques needed.**
- Phenomenological issues like R-parity, electroweak symmetry breaking needs to be resolved.
- **Moduli stabilisation in heterotic string theory is difficult!**
- How often do ‘accidents’ occur?
- Are there general rules for small W_0 ?