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Phenomenological Questions

Fermion Masses and Mixings
Dark matter

these values? What is dark matter comprised
of?

Why do we have mass hierarchies?

Why do Yukawa matrices take

Hierarchy Problem Strong CP Problem

voweakcscale Sppres
electroweak-scale suppressed? Why do we have a 0-vacua?
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Want to focus on heterotic
Eg X Eg on smooth CYs




heterotic
Eq X Eqg

String Model Building

Want to focus on heterotic
Eq X Eq on smooth CYs.




R S TR
~% .- et rra s
BT S T T
A A T T Y oty v B o
ettt e 425N TR v v N "
R L Sl T L v e L ora s TR R AT b2
R A BTN S LTI TR AT N:..H_““
PRSI TR .
e MR
C Sapesen RRREENEC,
; B AT
4
SN
G
it
B

String Model Building

Want to focus on heterotic © -
Eq X Eq on smooth CYs.

Advantages
- Natural ¢ embeddlng of Standard f
i Model gauge group into Eg ‘

' Have lists of smooth CYs - good
| understanding

'+ Models with no exotic matter can
| Dbe found
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String Model Building

Want to focus on heterotic
Eq X Eq on smooth CYs.

Advantages leflcultles

Natural embeddlng of Standard ’ “Need vector bundle - mathematlcally %
. Model gauge group into Eg * difficult ‘

i CY metric, HYM connection not known]

l* Have lists of smooth CYs - good . et .
i - analytical calculations impossible

understanding

'« Models with . " | | no natural hierarchy of localisation of
| Of SIS WITth no exotic mattercan 11 gauge degrees of freedom along the |
?,f be founa | | gravitational branes |
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T o . T o 3 | Number of families is given f
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i+ heterotic £g X Eg superstring theory

Physics

I+ Calabi-Yau threefold X
| Spectrum

I+ vector bundle V — X for vector multiplets

Geometry Couplings

| PhyS|CaI Yukawa Coupllngs come from holomorphlc Yukawa
couphngs
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X

scaled by matter field metric

X

Direct perturbative computation with aid of ML techniques
possible! [constantin et al. (2024)]
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Number of families is given |

Ingredlents | by index of bundle —ind V

i« heterotic g X Eq superstring theory
Physics

'« Calabi-Yau threefold X
Spectrum

f+ vector bundle V — X for vector multiplets Geometry Couplings

| PhyS|CaI Yukawa Coupllngs come from holomorphlc Yukawa

Wcouphngs

‘Coefflment calculation - DIFFICULT: |

A’IJKN'[ I/I/\VJ/\VK/\Q
X

| ' : | tter fiel tri
» complicated dependence on moduli scaled by matter field metric

fields

X

° hon- perturbatlve correctlons are hard |

Direct perturbative computation with aid of ML techniques
possible! [constantin et al. (2024)]
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Heterotic CY Compactifications and Line undle Standard Models

{Ingredients:

i« heterotic g X Eq superstring theory

Mathematics Physics

I+ Calabi-Yau threefold X
Topology Spectrum

f+ vector bundle V — X for vector multiplets Geometry Couplings

Select vector bundle + Get GGUT C Ly s

coupling

Special to this string construction! —~ 5 ' Step 3 : U(l) symmetries
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‘ SUB) X SU(2) X U(1) using a Wilson
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Kahler moduli

Low-energy matter field
structure: 248 of Eg
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| Step 2 : Wilson-line breaking |

 Further break SU(JS) to
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{Ingredients:

' e heterotic Lg X Eg superstring theory

'+ Calabi-Yau threefold X

te vector bundle V — X for vector multiplets !

e V sum of line bundles

| Step 2: Wilson-line breaking |

 Further break SU(JS) to

| SUB) X SU(2) X U(1) using a Wilson |

Mathematics Physics

Topology Spectrum

Geometry Couplings

Large number of models with
SM spectrum found by

computational methods!
[Anderson et al. (2013), Constantin et al.
(2018)]

Low-energy matter field
structure: 248 of Eg

K&hler moduli: 75 = 13
transforms as

LY,
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+ Globally remnant £ = S(U(1)°)
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exploit this to constrain couplings in |
effective theory

 This gives a degree of analytical control |
on low-energy effective theory ‘;j.
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?f’ Ingredlents
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Topology Spectrum
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Step 3: U(1) symmetries | A field C with charge q(C) in #will transform as:

. Globally remnant .Z = S(U(1)°) ', C — ¢—O)reC

symmetries (GS-anomalous in HE) - | |
exploit this to constrain couplings In fj Use this to constrain the form of the Yukawa couplings in: |

effective theory W = /A\;‘J(gb)H“QluJ

 This gives a degree of analytical control |
__onlow-energy effective theory | |suchthatiorexample

(l(/\ (cb)) = = Q(H”Q’ ! )
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_ Ingredlents

i« heterotic g X Eq superstring theory
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I+ Calabi-Yau threefold X
Topology Spectrum

f+ vector bundle V — X for vector multiplets Geometry Couplings

Step 3: U(1) symmetries | ,A fleld C W|th Charge q(C) in j will transform as:

» Globally remnant F = S(U(ll)s) ', n C > ¢—9C)er
symmetries (GS-anomalous in HE) - | |
exploit this to constrain couplings In fj Use this to constrain the form of the Yukawa couplings in: |
effective theory

W= Ay H"Q"w’
» This gives a degree of analytical control
__onlow-energy effective theory | |suchthatiorexample

(l(/\ (cb)) = = Q(H”Q’ ! )

a function of moduli fields ¢, and @
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Ingredlents

i« heterotic g X Eq superstring theory

Mathematics Physics

. Calabi-Yau threefold X
| Topology Spectrum

f+ vector bundle V — X for vector multiplets Geometry Couplings

' Step 3: U(1) symmetries |

+ Globally remnant £ = S(U(1)°)

symmetries (GS-anomalous in HE) - %_ Can we calculate couplings and
exploit this to constrain couplings in extract flavour physics?
effective theory w

 This gives a degree of analytical control |
on low-energy effective theory }j.

11



Low-energy effective action and symmetries

» In low-energies the models are 4d ./ = 1 SUSY Standard Models [anderson et al. (2012)

* Relevant terms in the Kahler potential and superpotential:
K = K"H*H" + k*HH¢ + KSC'C7 + ...
W= AYH"QW + AL HIQ'd! + A HIL e + pH"H® + f,L"H" + ji,

12



e fermion masses and mixings

* gives masses and mixings of

Low-energy effective action and symmetries

» In low-energies the models are 4d ./ = 1 SUSY Standard Models [anderson et al. (2012)

* Relevant terms in the Kahler potential and superpotential:
K = K"H*H" + k*HH¢ + KSC'C7 + ...

A HQ'd! + AjH L'’ + pH"H + f,L'H" + g

W = /A\}‘JH’“‘QIMJ +

Yﬁka‘wa couplings

quarks and charged lepton
masses

m,, m., ..., VoKM
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* Relevant terms in the Kahler potential and superpotential:
= K“H"H" + k*HA? + KSC'CY +

W= A HMQ’uf + AfHQa! + AgHILe! +“Hd+ﬂ1L’H”+ﬂo

;, Yukawa couplings | u -term

H
I

'+ fermion masses and mixings ' » electroweak breaking scale

* gives masses and mixings of
. quarks and charged lepton
masses

| to the Planck scale as

M, ~1071Mm
mu, mc, cees VCKI\/I H P

‘« can use VEVs of moduli fields to
~_ suppress thls term




Low-energy effective action and symmetries

» In low-energies the models are 4d ./ = 1 SUSY Standard Models [anderson et al. (2012)

* Relevant terms in the Kahler potential and superpotential:

K = K"H*H" + kK"HH? + K5C'CY +

|

| Yukawa couplings

'|
M

|« fermion masses and mixings

* gives masses and mixings of
. quarks and charged lepton
masses

mu, mc, cees VCKI\/I

u -term

electroweak breaking scale

to the Planck scale as
—17

can use VEVs of moduli fields to
suppress thls term

: ‘I_\let‘Jtrino Physics

want to get three light families of |
neutrinos via the see-saw mechanism |

bundle moduli ¢, with zero VEVs act
as RH neutrinos

ji, L' H" - Dirac mass terms

flg O M;:p;¢h; - Majorana mass terms |




Goal

 Using the global U(1) symmetries # we write down low-energy effective
Lagrangian

» Extract relevant phenomenological terms - are there models that give good
phenomenology?
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i ‘

B Models with SM spectu

[Anderson et al. (2013)]

)\

o three chiral families

_____g’
e one vector-like Higgs pair
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Goal

 Using the global U(1) symmetries # we write down low-energy effective
Lagrangian

» Extract relevant phenomenological terms - are there models that give good
phenomenology?

—

~ Models with SM spectrum | , Models with good
| [Anderson et al. (2013)] ) ' phenomenology f
o three chiral families ; | fermionic masses and

—®|  mixings (flavour physics)

e one vector-like Higgs pair

. no anti-families
)
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|
|
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i
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Method

Models with SM spectrum

Step 1: /i-term suppression

fields to set small y-term

’ find combinations of VEVs that

'« My, < M, , use VEVs of moduli

' wouldsety — 0 f

| Step 2: masses and mixings

i+ for each combination use remaining §
- VEVs to obtain masses and mixings |

'+ gradient descent algorithm to find
~suitable VEVs and Yukawa
coefficients

14

Models with good pheno

| Step 3: neutrino physics |

'« compute Dirac and Majorana |
t couplings and construct neutrino |
masses - three light families? |

| Step 4: stabilise moduli and |
" coefficients

|+ explain the values of the moduli |
i, VEVs and the Yukawa coefficients §
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Models with SM spectrum

Step 1: /i-term suppression

'« My < M, use VEVs of moduli
| fields to set small yu-term |

'+ gradient descent algorithm to find
~suitable VEVs and Yukawa
coefficients

find combinations of VEVs that |
| wouldsetu — 0

H= ¢, + P 0,D, + P3P,
Set (¢h,) = (D) =0
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Models with SM spectrum Models with good pheno

. Step 2: masses and mixings § Step 3: neutrino physics

Step 1: /i-term suppression

i for each combination use remaining |

{ |+ compute Dirac and Majorana
VEVs to obtain masses and mixings

couplings and construct neutrino !

- My < Mp , use VEVs of moduli f |
: . masses - three light families? |

fields to set small p-term | |
t* gradient descent algorithm to find
~ suitable VEVs and Yukawa
coefficients

find combinations of VEVs that |
| wouldsetu — 0

O1P3ps Py, P3¢y
i =o0, + P, 0, D, + P3P, Y,=| &, ¢ ¢s
Set (¢h,) = (P;) =0 Oy 3 1+ Py

Descent algorithm on
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Method

Models with SM spectrum Models with good pheno

. Step 2: masses and mixings § Step 3: neutrino physics

Step 1: /i-term suppression

i for each combination use remaining |

{ |+ compute Dirac and Majorana
VEVs to obtain masses and mixings

couplings and construct neutrino }

- My < Mp , use VEVs of moduli f i
: . masses - three light families? |

fields to set small p-term | | |
t* gradient descent algorithm to find
 suitable VEVs and Yukawa
coefficients

’ find combinations of VEVs that

_g check if VEV choices
| would set u — 0

consistent with possible

] ‘ ‘ N neutrino physics
H= ¢, + P 0,D, + P3P, Y,=| © ¢ D3
Set (¢h,) = (P;) =0 O3y D3 1+ s

Descent algorithm on

aij? <¢a>? <q)l>

| Step 4: stabilise moduliand |
" coefficients

|+ explain the values of the moduli |
i, VEVs and the Yukawa coefficients §
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General Observations

Results of Scans

Numbers

Total number of Cicys 46
Number of Line Bundles 26695
with diagonal equivariant structure|19659
+ Higgs-pairs 16255
+ No anti-families 12122
LBs with unresolved cohomology | 4488
Number of low-energy spectra, 6845
+ unique G-spectra, 6088

Number of pheno-viable models 4]
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Results of Scans

General Observations

Numbers Phenomenological Observations
Total number of Cicys 46 « Order-one coefficients may generate hierarchy
Number of Line Bundles 26695 - their ranges are bounded
with diagonal equivariant structure|19659
+ Higgs-pairs 16255 * Need full-rank up-Yukawa textures
+ No anti-families 12122

* Trade-off between increasing rank of down-

LBs with unresolved cohomology | 4488 Yukawa and decreasing order-one range

Number of low-energy spectra, 6845

+ unique G-spectra 60883 * Generically R-parity violating terms not
Number of pheno-viable models 41 suppressed

15



Example Model

u-term analysis

Downstairs Spectrum

Matter fields
Higgs fields
Modulz

101, 102, 104, 515, 525, B35
Hs 4, Ho 4
Oy ... ®s
®1,3, P1,4, 92,3, P25, P35,
$2,1, $3,1, P4,2, P43, @1,2
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Example Model

u-term analysis

Downstairs Spectrum

Matter fields|101, 102, 104, 515, 525, B35
Higgs fields H24, Ho 4

Modulz 1, ..., Ps
®1,3, P1,4, 92,3, P2,5, P3,5,
®2,1, P3,1, Pa,2, P4a,3, P1,2

~ Compute y-term insertions

U~ @12021 + @13031 + P1.203 1023
+ Pa 3031014 + Pa2¢21P1,4 + D7 203

"y
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u-term analysis

Downstairs Spectrum

Matter fields|101, 102, 104, 515, 525, B35
Higgs fields H24, Ho 4

Modulz 1, ..., Ps
®1,3, P1,4, 92,3, P2,5, P3,5,
®2,1, P3,1, Pa,2, P4a,3, P1,2

~ Compute y-term insertions

U~ @12021 + @13031 + P1.203 1023
+ Pa 3031014 + Pa2¢21P1,4 + D7 203

"y
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Example Model

u-term analysis

Downstairs Spectrum

Matter fields|101, 102, 104, 515, 82,5, 53,5| | ) _term can be consistently set to zero if we
Higgs fields Ho 4, Ho 4 ;i e.
Modulz Oy, ..., O5

¢1,37 ¢1,47 ¢2,37 ¢2,57 ¢3,57 ’ { <(D3>’ <(I)4>’ <(I)5>9 <¢1,3>9 <¢1,4>’ <¢2,4>9 <¢2,5>9 <¢3,5>9 <¢1,2> } — -"
e e e | W )]

4

]

~ Compute u-term insertions

U~ @12021 + @13031 + P1.203 1023
$1,303,101.4 + Pa2P2101,4 + P12 4

"y

16



Example Model

Yukawa Masses

Downstairs Spectrum

Matter fields
Higgs fields
Modulz

101, 102, 104, 515, B25, B35
H> 4, Ho 4
Oy ... Bs
®1,3, P1,4, P2,3, P2.5, P35,
@21, ®3.1, P42, P43, P12

17



Example Model

Yukawa Masses

Downstairs Spectrum

Matter fields|101, 102, 104, 31,5, 52,5, 53,5
Higgs fields Ho> 4, ﬁz,zx

Modulz (I)l, e ooy (1)5
®1,3, 91,4, 92,3, P25, P35,
®2,1, $3.1, Pa,2, P43, P1,2

Yukawa Insertions

5 0 P5¢14+ P21
AY ~ 0 0 1
Dspra+ o1 1 P57 4+ P14 021

Oy 5 P21 + P3.1 Oy P 1
A% ~ P, O+ 0 0

b, 975%,1 + 01,4031 PLoPs P14+ P21 P14




Example Model

Yukawa Masses

Downstairs Spectrum Scan of VEV values

®, — 0.01, ®5 — 0.0130746, ¢1.4 — 0.370977,

Matter fields|101, 102, 104, 51,5, 52,5, 53,5 do 1 — 0.47089, ¢31 — 0.1,

Higgs fields Ho 4, Ho 4

Modulz (I)l, e ooy O3
®1,3, P1,4, P2,3, P2.5, P35,
$2,1, 03,1, P4,2, P43, @1,2

Yukawa Insertions

5 0 P5¢14+ P21
AY ~ 0 0 1
Dspra+ o1 1 P57 4+ P14 021

®y D5 P21 + P31 ®qy D5 1
A ~ P, s 0 0
D5+ Pra031 PoPsdra+ Pagai P14

17



Example Model

Yukawa Masses

Downstairs Spectrum Scan of VEV values

Matter fields|101, 102, 104, 5,5, 525, B35 (1)2_>0'01’(;I)5 106(117%%246;5%,4_)—0) (1)-370977,
Higgs fields Hs 4, Ho 4 2,1 =7 V. , 93,1 — 0.1,
Moduls P, ..., D5
1.3, P1.4, P2.3, P25, P3.5, B Masses and mlxmg o
Pa1s 93,1 Pa.2) P43 P12 (my.my.m) = (0.0216,127,172.4)GeV

(m,,m,,m,) = (0.00467,0.093,4.18)GeV

Yukawa Insertions (m, ,m, . m,) = (0.000511,0.106,1.78)GeV

e %0 Gsduatu 0.970  0.242  0.00358
Ps P14+ P21 1 P 9’5%,4 + ¢1.4 921 ‘ VCKI\/I = | 0.242 0.969  0.0448 ;
0.00737 0.0444 0.999 ﬂ

®y D5 P21 + P31 ®qy D5 1
A ~ Oy s 0 0
b, ¢%,1 + 01,4031 PLoPs P14+ PoPo1 P14

17



Short Summary

 Explored possible phenomenological issues and properties of heterotic line
bundle Standard Models up to Picard number 5

» (0(10) models with suppressed p-term and accurate charged fermion masses
and mixings can be obtained

* Neutrino physics - nothing interesting so far...

* And R-parity needs more work too...

18



Moduli Stabilisation in String Theory

* So far we have only set moduli VEVs to the values that we need to get
phenomenological agreements.

* Any realistic attempt to reproduce string models must address the large
number of light scalar moduli fields.

19



Moduli Stabilisation in String Theory

* So far we have only set moduli VEVs to the values that we need to get
phenomenological agreements.

* Any realistic attempt to reproduce string models must address the large
number of light scalar moduli fields.

1. Unbroken supersymmetry

2. Large # moduli fields
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Moduli Stabilisation in String Theory

* So far we have only set moduli VEVs to the values that we need to get
phenomenological agreements.

* Any realistic attempt to reproduce string models must address the large
number of light scalar moduli fields.

Problems of vacuum solutions

in string theory RS .

1. Unbroken supersymmetry |=—"
| |
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Moduli Stabilisation in String Theory

* So far we have only set moduli VEVs to the values that we need to get
phenomenological agreements.

* Any realistic attempt to reproduce string models must address the large
number of light scalar moduli fields.

Problems of vacuum solutions

no SUSY observed  far e oo
in strlng theory RS }

1. Unbroken supersymmetry [——"
\’

2. Large modull flelds l

no long-range fifth torce | Moduli Stabilisation

19




Moduli Stabilisation in String Theory

Types of Moduli Fields

complex structure moduli z;

K&hler moduli 7

gauge bundle moduli ¢,

axiodilaton 7

+

Non-vacuum solutions

« p-form quantised fluxes

* Jocalised sources (D-branes)

20



Moduli Stabilisation in String Theory

Types of Moduli Fields Flux Compactifications

complex structure moduli z; * sources of stress-energy in

iInternal space - non-vacuum

Kahler moduli 7; solutions

gauge bundle moduli ¢, e small corrections to vacuum

| :
solution

axiodilaton 7

* lead to SUSY-breaking mass
splitting

+

Non-vacuum solutions

p-form quantised fluxes e generate scalar potential V
for moduli fields - masses

localised sources (D-branes)

20



Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d ./ = 1 SUSY action

* for a particular type of theory write down structure of
superpotential W and Kahler potential K

* Superpotential:

W = Whux(7, 2) + Wnp(7, 25, T))

e Kahler potential:

K:Ktree_l_ oo

21



Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d ./ = 1 SUSY action

* for a particular type of theory write down structure of
superpotential W and Kahler potential K

perturbatively in orders

* Superpotential: ,
PP of &’ and g, expansions

W = Whux(7, 2) + Wnp(7, 25, T))

e Kahler potential:

K:Ktree_l_ oo

21



Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d ./ = 1 SUSY action

* for a particular type of theory write down structure of
superpotential W and Kahler potential K

perturbatively in orders
of &’ and g, expansions

W = Whux(7, 2) + Wnp(7, 25, T))

* Superpotential:

e Kahler potential:

K — Ktre oo

exhibits no-scale
structure
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Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d ./ = 1 SUSY action

for a particular type of theory write down structure of
superpotential W and Kahler potential K

perturbatively in orders
of &’ and g, expansions

W = Whux(7, 2) + Wnp(7, 25, T))

Superpotential:

Kahler potential:

K — Ktre oo

need quantum
exhibits no-scale corrections in

structure Wnp , errt , Knp to
stabilise 7;
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Moduli Stabilisation in String Theory

Construction of isolated vacua

Step 1: 4d ./ = 1 SUSY action Step 2: Construct V and exploit structure

for a particular type of theory write down structure of

* key quantity is F-term scalar potential
superpotential W and Kahler potential K

perturbatively in orders
of ' and g, expansions

W = Whux(7, 2) + Wnp(7, 25, T))

V.= eX |[KMND, WDW — 3| W

Superpotential:

* to obtain SUSY vacua - exploit structure such

that F-terms of all moduli vanish exactly
Kahler potential:

D;W=D,W=DW=0

K — Ktre oo

need quantum
exhibits no-scale corrections in

structure Wnp , errt , Knp to
stabilise 7

21



Moduli Stabilisation in Heterotic Theories
The KKLT Scenario



Moduli Stabilisation in Heterotic Theories

The KKLT Scenario
Step 1: 4d ./ = 1 SUSY action

e Start with type lIB flux compactifications on O3/07
orientifolds

e Superpotential:

W = Wix(7*, %) + 9 (7, 7)e 79D + .

e Kahler potential:

K = —2log(2*g>"*7") — log (—i(T — %)) — log <—i[Q A Q)
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Moduli Stabilisation in Heterotic Theories

The KKLT Scenario
Step 1: 4d ./ = 1 SUSY action

e Start with type lIB flux compactifications on O3/07
orientifolds

Wn p(Ta Z]a 7;)

e Superpotential: /

W = Wix(7*, %) + 9 (7, 7)e 79D + .

e Kahler potential:

K = —2log(2*g>"*7") — log (—i(T — %)) — log <—i[Q A Q)

22



Moduli Stabilisation in Heterotic Theories

The KKLT Scenario
Step 1: 4d ./ = 1 SUSY action

e Start with type lIB flux compactifications on O3/07
orientifolds

Wn p(Ta Z]a 7;)

e Superpotential: /

W = Wix(7*, %) + 9 (7, 7)e 79D + .

K(a’)3 Kcs

l

» Kahler potential: Ktree

/ l

K = —2log(2*g>"*7") — log (—i(T — %)) — log <—i[Q A Q)
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Moduli Stabilisation in Heterotic Theories

The KKLT Scenario
Step 1: 4d ./ = 1 SUSY action

e Start with type lIB flux compactifications on O3/07
orientifolds

Wn p(Ta Z]a Z)

e Superpotential: /

W = Wix(7*, %) + 9 (7, 7)e 79D + .

» Kéahler potential: Kiree Kay Kes

/ l l

K = —2log(2*g>"*7") — log (—i(T — %)) — log <—i[Q A Q)

Key idea 1

if Wy = (Wix) exponentially small, small SUSY-

breaking of fluxes is compensated by W, ,
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Moduli Stabilisation in Heterotic Theories

The KKLT Scenario
Step 1: 4d ./ = 1 SUSY action

Start with type IIB flux compactifications on O3/07
orientifolds

Wn p(Ta Z]a Z)

Superpotential: /

W = Wix(7*, %) + 9 (7, 7)e 79D + .

» Kéahler potential: Kiree Kay Kes

/ l l

K = —2log(2*g>"*7") — log (—i(T — %)) — log <—i[Q A Q)

Key idea 1

if Wy = (Wix) exponentially small, small SUSY-

breaking of fluxes is compensated by W, ,

22

Step 2: Construct V and exploit structure

The full potential is

\ N X 2
V=" |K"DyWDgW = 3| W[~ | + V5

vacuum occurs in regime where all approximations are valid
(g, < 1, a’-exp., back-reactions)

complex structure stabilised near conifold singularity and fluxes
lead to Klebanov-Strassler throat region

Vup - contribution by anti-D3 branes at the throat causes uplift to
dS vacua




Moduli Stabilisation in Heterotic Theories

The KKLT Scenario
Step 1: 4d ./ = 1 SUSY action

Start with type IIB flux compactifications on O3/07
orientifolds

Wn p(Ta Z]a Z)

Superpotential: /

W = Wix(7*, %) + 9 (7, 7)e 79D + .

» Kéahler potential: Kiree Kay Kes

/ l l

K = —2log(2*g>"*7") — log (—i(T — %)) — log <—i[Q A Q)

Key idea 1

if Wy = (Wix) exponentially small, small SUSY-

breaking of fluxes is compensated by W, ,

22

Step 2: Construct V and exploit structure

The full potential is vV
F

_ _ _ —/ 5
V = oK |[KMYD, WD W —5 | W] ]+VuIO

vacuum occurs in regime where all approximations are valid
(g, < 1, a’-exp., back-reactions)

complex structure stabilised near conifold singularity and fluxes
lead to Klebanov-Strassler throat region

Vup - contribution by anti-D3 branes at the throat causes uplift to
dS vacua




Moduli Stabilisation in Heterotic Theories

The KKLT Scenario
Step 1: 4d ./ = 1 SUSY action

Start with type IIB flux compactifications on O3/07
orientifolds

Wn p(Ta Z]a Z)

Superpotential: /

W = Wix(7*, %) + 9 (7, 7)e 79D + .

» Kéahler potential: Kiree Kay Kes

/ l l

K = —2log(2*g>"*7") — log (—i(T — %)) — log <—i[Q A Q)

Key idea 1

if Wy = (Wix) exponentially small, small SUSY-

breaking of fluxes is compensated by W, ,

22

Step 2: Construct V and exploit structure

The full potential is vV
F

_ _ _ —/ 5
V= K [KMNDMWDNW 5|W) ] Vi

vacuum occurs in regime where all approximations are valid
(g, < 1, a’-exp., back-reactions)

complex structure stabilised near conifold singularity and fluxes
lead to Klebanov-Strassler throat region

Vup - contribution by anti-D3 branes at the throat causes uplift to
dS vacua

Key idea 2

compactification near conifold singularity allows
controllable breaking of SUSY




Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is Wﬂ:tu,x?

Classical Gukov-Vafa-Witten flux
superpotential:

Wflux ~ J G3 A L2
X6
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Classical Gukov-Vafa-Witten flux
superpotential:
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flux Gy = F5; — 7H,
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Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is Wﬂﬂux? holomorphic (3,0) form on X¢

Classical Gukov-Vafa-Witten flux
superpotential:

Wflux ~ J G3 A L2

Ve

flux Gy = F5; — 7H,
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Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is WHMX? holomorphic (3,0) form on X¢

Classical Gukov-Vafa-Witten flux
superpotential:

Wiiux ~ J G3 A L
X7<
flux Gy = F5; — 7H,

RR 3-form flux
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Moduli Stabilisation in Heterotic Theories
Basics of Periods and Fluxes

skabilise complex

Question: What is Wﬂ.w&’ holomorphic (3,0) form on X cbruckure moduli

Classical Gukov-Vafa-Witten flux
superpotential:

Wiiux ~ J G3 A L
X7<
flux Gy = F5; — 7H,

RR 3-form flux
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Moduli Stabilisation in Heterotic Theories

Basics of Periods and Fluxes

Question: What is Wg, 7 holomorphic (3,0) form on X stabilise complex
“H“" phic (3,0) 0 skructure modult
: : Y e
Classical Gukov-Vafa-Witten flux [ Typically introduce symplectic basis of a, , f* € Hy(Xy, Z), |
superpotential: | A=0,... !

Define period vector 11 as

WﬂUX ~ J'X G3 N\ Q H :Q/\ﬂA 3‘714
7' | o [Qnrat) (ZA)’

flux Gy = Iy — TH, such that

S

—

|
FA- homogeneous projective coords on cs moduli space

0F ,
RR 3-form flux NSNS 3-form flux

0F5
F »f° holomorphic 3-form |

F - prepotential, F 5 =

Q — zAOCA—

23



Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic
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Central Question: Can we do something similar i heterotic Eg X Eg theories?
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Available Fluxes Flux Integers

Type IIB (KKLT)

Heterotic
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Available Fluxes Flux Integers
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*
*
*

RR Flux
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Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic

Central Question: Can we do something similar i heterotic Eg X Eg theories?

Available Fluxes Flux Integers
=( |F | Fa A 0?
Type IIB (KKLT) F,, H. / (J A J 3”)
| ) - ﬂz(JH3AaA,[H3AaA>
RR Flux NS-NS flux

Heterotic I_]3 S s (J H.Aay, [ H, A aA>

24
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lIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic Eg X Eg theories?



Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic Eg X Eg theories?
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Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic Eg X Eg theories?

Type 1IB (KKLT)

Heterotic
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Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic Eg X Eg theories?

-I-ype I I B (KKLT) f are quantised fluxes of F; pt are quantised fluxes of H;

W=\ﬁ(f—f)T- n
0 - H) N

Heterotic
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Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic Eg X Eg theories?

Type ”B (KKLT) f are quantisecgluxes of I, p are quantised fluxes of H; can make WO small
Wi=a/—=(f—1) -1n-1I due to large number of
0 \[,(f 1y RR fluxes

Heterotic

25



Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic Eg X Eg theories?

Type ”B (KKLT) f are quantisecgluxes of I, p are quantised fluxes of H; can make WO small
Wi=a/—=(f—1) -1n-1I due to large number of
0 \[,(f 1y RR fluxes

some Pffaffian

Heterotic W =W, + AB(z, z, ¢a)e_2”Ti + ...

Wo=u"-n-1

25



Moduli Stabilisation in Heterotic Theories
lIB (KKLT) vs Heterotic

Central Question: Can we do something similar in heterotic Eg X Eg theories?

due to large number of

Type ”B (KKLT) f are quantisedziluxes of I, p are quantised fluxes of H; can make WO small
Wo=1/—(f—tu)" - 511
0 \[,(f 1y RR fluxes

some Pffaffian

Heterotic W=W,+ A(z, z, ¢a)€_2ﬂTi 4+ ... No RR fluxes - traditional
small W, argument does
W, = ul -y 11 not work - WHAT DO WE

DO?

25



Moduli Stabilisation in Heterotic Theories
Quick Recap

* Natural context to study moduli stabilisation - flux compactifications

« Most prominent example - KKLT scenario, requires small W),

 Argument requires large number of RR fluxes which does not exist In
heterotic theories

» Is it possible that we have W,, "accidentally’ small to compete with the small
non-perturbative term? For example - some natural region in complex

structure moduli space that gives small W,?

26



Recall introduced symplectic basis of |
a,,pr € Hy(X, Z),A =0,...,h*!

|

Defined period vector 11 as H

| QA B, (5’7’A> |
Il = P ,
UQ/\aA Fh

S — ————————— E———— j;j

Heterotic Moduli Stabilisation

Setting the scene

rtrT - ]
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Recall introduced symplectic basis of |
a,,pr € Hy(X, Z),A =0,...,h*!

|

Defined period vector 11 as H

| QA B, (5’%) |
Il = P ,
UQ/\aA Fh

— ————————— rt—-J

Heterotic Moduli Stabilisation

Setting the scene

 Goal: To analyse whether W, can be small in the heterotic
setting - only look at complex structure moduli dependence.

rtrT R _-—“1

|

* The superpotential and Kahler potential at tree-level are:

W = WJ' HyANQ=w [nAZ’A—mA?A] = wu'nll
X

6

K = —log (zJ Q/\Q) = — log [z( ZAF , — SZ"A@A)] = log (—iHTnH)
X

27



Recall introduced symplectic basis of
a,,pr € Hy(X, Z),A =0,...,h*!

Heterotic Moduli Stabilisation

Setting the scene

Defined period vector 11 as

 Goal: To analyse whether W, can be small in the heterotic
setting - only look at complex structure moduli dependence.

rtrT R I‘j

|

___ e = =

* The superpotential and Kahler potential at tree-level are: e
+ Scalar potential:

W = WJ' HyANQ=w [nAZ’A — mAf’ZA] = wu'nll
Xs |
_ _ _ ' Global SUSY vacua:
K= —log (i J Q2 A Q) = — log [i (ZAF 5 - :Z’A%A)] = log (—ilI'yIl) |
X,

ow
6 — 0
0 1 0/¢
where n = ( ; O") IS the symplectic defining matrix. i+ Local SUSY vacua:
-1, 0,

27

|
|

1 = “nQ/\'BA _ <9A>
B [QAa” - \g2) l

Things to calculate

V — eK <KaEDaWDEW -3 ‘ W‘2>

F,=W,+KW=0 |




= = mg= = - . . _ .

Recall introduced lectic basis of

Heterotic Moduli Stabilisation R TR
Setting the scene H Defined period vector 11 as H
| n |

(@) TG
 Goal: To analyse whether W, can be small in the heterotic h IT= ( Aﬁ‘i) = <Jj> l
setting - only look at complex structure moduli dependence. | \]RAa 7/

* The superpotential and Kahler potential at tree-level are: Th' / R

'+ Scalar potential:

_ _ A _ L Ag | — T | _ B f

6 £
_ _ _ ' Global SUSY vacua:
X ’ —
0 1 L"
where 1 = ( ; O") Is the symplectic defining matrix. i+ Local SUSY vacua:
—1, Y,
have defined affine versic;\ns of the ,, o ' » " ‘ o
Cscoordinate:ZA=zOonthe S
patch Z° # 0

27



Heterotic Moduli Stabilisation

Large Complex Structure Limit

* et us first look at large complex structure limit, where F4 S .
* |n this case the leading pre-potential is

1 d, FFZ°
6 Z0

F =

&= bczazb

., z° is mirror volume



Heterotic Moduli Stabilisation

Large Complex Structure Limit

* et us first look at large complex structure limit, where F4 S .
* |n this case the leading pre-potential is

1 d, FFZ°
6 Z0

Global SUSY

|« Wanttoset

ow _ ~ im? .
=W in, —d_, mPZ° - ; d,7"7¢| =0

* Crucial obstacle - solving this leaves

{ « This cannot be set small since & > 1

~ 7 a_-b_c - .
K =d_,,.2°2°z" is mirror volume



Heterotic Moduli Stabilisation

Large Complex Structure Limit

* et us first look at large complex structure limit, where F4 > 0.

* |n this case the leading pre-potential is

|« Wanttoset

ow -
e w|in,—d, , m°Z° A

* Crucial obstacle - solving this leaves

S(Wy) =w

1 d, FFZ°

%0

{ « This cannot be set small since ¥ > 1 !

A

I+ Wanttoset

Local SUSY

oW
F, = 27 W =0
0Z¢

t+ Crucial obstacle - solving this leaves

S(Wy) =w

{ « This cannot be set small since ¥ > 1

zczgs mirror volume



Heterotic Moduli Stabilisation

General Complex Structure

* For general complex structure we do not have a general form of the pre-
potential F .

* [ypically complicated - given by hypergeometric functions...

* Similar general arguments suggest that there is no consistent SUSY
Minkowski vacua. But doesn’t forbid AdS or dS vacua.

 What if we look at explicit examples to analyse general complex structure
moduli spaces?
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Mirror Quintic

Manifold

5
p= 2% =] ]~
k=1 k=1



Mirror Quintic
Manifold L

: Moduli Space large complex structure
_ 5
p = Zxk —Sl/fl ka
k=1 k=1

y =1
conifold point

=0
Fermat Quintic
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Mirror Quintic

W — oo

large complex structure

conifold point
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Mirror Quintic
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large complex structure

Moduli Space
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Mirror Quintic

Period Expansion Basis

Period Expansion |y| < 1 w, Period Vector
2m+mjp M m
1 & a"TH(E)Gy) _ W,
. — z e T — —_
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Mirror Quintic

Period Expansion Basis

Period Expansion || < 1 w, beriod Vector
W=-<Y Ty = | =M
TS A - 5 L o w

Superpotential

W = wu'yll

Kihler potential —

K = —logk
kK = — i[1'yll
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Mirror Quintic

Period Expansion Basis

Period Expansion |y| < 1 W, Period Vector
2m+mjy- ¢ M m
| & a?mMT () (Sy) @,
. — TJ — —
wY) =~ - Z,l FemT(1 =2 W) = | &, [1=Mw
’(Dkl
Superpotential Global SUSY
W = wu'nll oW = 0
0/°
Kahler potential —
Local SUSY

K= —-logk

KA
Fyp=W,——W=20
kK = — i[1'yll 8 Ak
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Mirror Quintic

Period Expansion Basis

Period Expansion || < 1 W, Period Vector
PILY il AN il =M
| — _ N w0 — —
SIS AT - 2 T v
_ @
Superpotential Global SUSY
_ T oW
W =wu" nll o 0 Scalar potential
a _
_ AB U _ 2
Kihler potential — V=K"DWDpW—3| W]
Local SUSY

K = —logk

KA
Fyp=W,——W=20
kK = — i[1'yll 8 Ak
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Mirror Quintic

Global SUSY
» Scan all flux integers (n, 1y, m®, mh) € {=20, ... ,20}
oW
. Solve for — =0
oy

. Compute values of | W/w |

. Best one obtained - | W/w| ~ 0.064 at
(ny, 1y, m®,mYH =+ (5,-2,9, —4)and w = —0.55—-0.25:1.

» W not symplectically-invariant under Sp(4,2)!
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Mirror Quintic
Local SUSY

* |nstead look at quantity
V = eKPW

 Repeat search for F-term set to zero,

K,
Fa= Ha__u
K

» Use solution y, which obeys |y, | < 1
to compute 7.
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Found Minima

errOr QUIntIC e (ny, nl,mo,ml) = (4,0,7, — 1)
Local SUSY ’ o = 0.12 — 0.36i
* |nstead look at quantity . Vo~ 125
V = eKPW

 Repeat search for F-term set to zero,

KCZ

F =W ——4W
K

» Use solution y, which obeys |y, | < 1
to compute 7.
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Found Minima

MirrOr QUintiC e (ny, nl,mo,ml) = (4,0,7, — 1)
Local SUSY

* |nstead look at quantity

Y — eK/ZV’V

o Vmin = 0.12 — 0.361
- YV min ~ 1.25

* Repeat search for F-term set to zero, /- V<l

KCZ
F =W, ——<W
K

» Use solution y, which obeys |y, | < 1
to compute 7.

F-term: |y| < 1

0
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Found Minima

MirrOr QUintiC e (ny, nl,mo,ml) = (4,0,7, — 1)
Local SUSY

* |nstead look at quantity

Y — eK/ZV’V

o Vmin = 0.12 — 0.36¢
- YV min ~ 1.25

 Repeat search for F-term set to zero, _ V<l

KCZ
F =W, ——<W
K

» Use solution y, which obeys |y, | < 1
to compute 7.

F-term: |y| < 1

0
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Fermat-type One-parameter Models



Fermat-type One-parameter Models

Manifolds

k=25: Mz{xiEIPl,l,l,l,l Mozx(s)—I—x?—l—:cg—l—xg—l—xf’l:O}
=6: Mz{wiE[Pg,l,l,l,l MO:ng—I—w?—I—xg—I—wg—!—wg:O}

k=8: Mz{:cq;EIP4,1,1,1,1 M0=4:c(2)+:c§—|—x§+:c§—l—:c2=0}

k=10: M= {z; € Ps2111|Mo =525+ 2z} +z3° +z3° + ;° = 0}
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Fermat-type One-parameter Models

Manifolds Period Expressions
k=5: M= {CL’Z (S |P1,1,1,1’1 M =$8+$?+$g+$g+$2 IO}

=6: M={z;€Py1111|Mo=2z}+ 2%+ 2§+ 2§ + 25 =0} Wi 1 € & ( ¢)
k=8: M= {z;€Py111,1|Mo=4zf+ 2]+ 25+ 25 + 25 =0} 0 -k H OF( an/k) Sln( ) !
: ’L
k=10: M= {z; € Ps2111|Mo =525+ 2z} +z3° +z3° + ;° = 0}

im(k—1)n

34



Fermat-type One-parameter Models

Manifolds Period Expressions
. M = {:t;Z € P11111 | My = :1:(5) +:c? —I—:cg + xg + xi = 0}

k=5

k=6": M={$i€ﬂ32’1,1,1,1 M0=2338—|-33€1;+33g—|—xg—|—33220} T S~ 1 e
k=8: M= {z;€Py1n1,|Mo=4aj+a]+a;+25+z5=0} WO T T, Z n) [1i—o T(1 — nu;/k) sin (%) A
k=10: M= {z;€Ps2111|My= b + 223 4+ 130 + 230 + x50 = 0} n=1 1=

im(k—1)n
k

Results
k (no, ni, mO, ml) wmin Vi |Whomo| |WO| |W1|
6 (—1,1,7,0) 0.392 + 0.679¢ 7.01 11.1 0.650 | 2.98
6 | (—2,2,-11,3) | —0.392—0.67% |7.01| 111 |0.421 | 1.55
6 (0,-2,5,0) —0.785 — 0.00002267 | 7.01 11.1 0.423 | 1.49
8 | (-2,—-1,—-1,1) 0.250 — 0.250¢2 290.5 8.95 191 1260
8 (0,—1,4,0) 0.801 + 0.00001362 | 8.54 11.1 121 2010
8 (-2,1,-6,2) 0.000463 — 0.8022 8.54 11.1 99.5 | 364
10 (2, —1, -1, —1) —0.585 — 0.8067 2.79 9.61 1.42 | 2.19

34



. M={z;€P11111

Manifolds

Moza:g—l—:c?—l—:cg—l—xg—l—xZ:O}

Fermat-type One-parameter Models

Period Expressions

34

Nok aMa zing. ..

: M = {xz € Poa111 | Mo =2x3 + 2§ + 25 + 25 + 2§ = 0} T > 1 em(kk o
M= (i€ Pag | Mo = 4234 2+ 05 +ad 42§ = 0) #00) = =% 2 ) 1y T0 = rwi/B) sim
. M ={z; €Ps211,1|Mo=5x5+ 22 + 3 +23 +z5 =0} n=1 +=0 z
Results

k (’I’Lo, ni, m07 ml) wmin VF |Whomo| |WO| |W1|

6 (—1,1,7,0) 0.392 + 0.679: 7.01 11.1 0.600 | 2.98

6 | (—2,2,—11,3) —0.392 — 0.679: 7.01 11.1 0.421 | 1.55

6 (0,-2,5,0) —0.785 — 0.0000226: | 7.01 11.1 0.423 | 1.49

8 | (-2,—-1,—-1,1) 0.250 — 0.250¢2 20.9 8.55 191 1260

8 (0,—1,4,0) 0.801 4+ 0.00001362 | 8.54 11.1 121 | 2510

8 (-2,1,-6,2) 0.000463 — 0.802¢ 8.54 11.1 99.5 | 364

10 | (2,-1,—-1,-1) —0.585 — 0.806¢ 2.79 9.61 1.42 | 2.19
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Two-parameter Model



Two-parameter Model

Manifold

_ 84 8 Ay 4 4 44
p=x; + x5+ X+ X+ X5 — WX XpXzx,X5 — 20X X,

35



TWO'parameter MOdeI Period Expansion in 8¢ <1

1 £ \/ﬁ
Manifold o o
p=x0+ X + x5+ X + x5 — 8ypx xxaxxs — 2¢x,x; wi(C, ) = —— Z Z a™ A(m)E(k)E"n*

4 m=1 k=0
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TWO'parameter MOdG' Period Expansion in 1 8(:\4/_ <1
T \/1

Manifold

0 0
— mj = m,,k
p=x0+ X + x5+ X + x5 — 8ypx xxaxxs — 2¢x,x; W](Ca n) = — 4 Z Z a™ A(m)E(k)S"n
m=1 k=0
Results
Region (nOa ni,na, mO, mla m2) (wmina Qbmin) VF |Whomo|

Bl <1| (1,2,-3,-1,1,-2) | (~0.160+0.555,0.069 — 0.844i) | 0.001579 | 0.0287
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Two-parameter Model

Manifold

_ 84 8 Ay 4 4 44
p=x; + x5+ X+ X+ X5 — WX XpXzx,X5 — 20X X,

84

Period Expansion In

11\/5

0 OO

<1

1 .
() =—— ), D, aVAmER "

4 m=1 k=0

Region of valid F-term solutions (to first-order linear approximation)
10

Results
Region | (ng,n1,n2, m®,m', m?) (Ymin, ®min) Vi | Whomol
4
|—€—1i\/7—7| <1 (1,2,-3,-1,1,-2) (—0.160 + 0.555%,0.069 — 0.844%) | 0.001579 | 0.0287
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TWO'parameter MOdel Period Expansion in 8¢ <1

_ 84 8 4 4 4 4.4
p=x; + x5+ X+ X+ X5 — WX XpXzx,X5 — 20X X,

Manifold

11\/5

1 .
wm) == ), ) @ AmER"
m=1 k=0

Region of valid F-term solutions (to first-order linear approximation)
10

Results
4
|—€—11\/7—7| <1 (1,2,-3,-1,1,-2) (—0.160 + 0.555%,0.069 — 0.844%) | 0.001579 | 0.0287

swall Wo seems Possibi.@.!
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Conclusions

 Want to see if we can repeat KKLI-like scenario in heterotic string theory.

 No RR fluxes in heterotic means small-W,, argument is not possible in
heterotic.

« But W, seems possible in some models - need specific period structure!

o Constraints on period structure can be In principle be derived!
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UV action
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The Dream Scenario

UV action

SUV — JDX. ..

4d effective action

S4d = [délxR-l-



The Dream Scenario

Uv aCti:V
Suv = J

Integral

Dx...

4d effective action

S4d = Jd4xR+



The Dream Scenario nteora

Calabi-Yau Data UV action
(geometry + topology) /

4d effective action

S4d = Jd4xR-|—



Non-perturbative effects

The Dream Scenario .

Integral
Calabi-Yau Data UV action o l
(geometry + topology) / Q
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Non-perturbative effects

The Dream Scenario .

Integral
Calabi-Yau Data UV action o l
(geometry + topology) Q

Moduli Stabilisation Electroweak Physics

. >
A V(o)
4d effective action
This costs too much
energy! | think I'll
® @ hang out down there.

S4d — Jd4xR+




Non-perturbative effects

The Dream Scenario .

Integral
Calabi-Yau Data UV action o l
(geometry + topology) / Q

Electroweak Physics

4 V(o)
4d effective action
> {E’.}Z’;E‘;?f}:}?ﬁk’?f:“]

String Phenomenology "



Outlook

 There is a lot more to do in string theory!

« String model building is still hard - many computational and algebraic
techniques needed.

 Phenomenological issues like R-parity, electroweak symmetry breaking needs to
be resolved.

 Moduli stabilisation Iin heterotic string theory is difficult!

e How often do ‘accidents’ occur?

» Are there general rules for small W,?
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