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Phenomenological Questions

Why do Yukawa matrices take 
these values?


Why do we have mass hierarchies?

Fermion Masses and Mixings

Why is the Higgs mass/ 
electroweak-scale suppressed?

Hierarchy Problem

What is dark matter comprised 
of?

Dark matter

Why do we have a -vacua?θ
Strong CP Problem
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The optimistic HEP’s view: 

How do I unify gravity with SM? 

QUANTUM GRAVITY?
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String Model Building
• most well-studied QG theory


• lots of dualities


• maybe best theory to understand 
HEP


• can get pheno properties!

Many types of string 
model building!
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String Model Building

• Natural embedding of Standard 
Model gauge group into 


• Have lists of smooth CYs - good 
understanding 


• Models with no exotic matter can 
be found

E8

Advantages

Want to focus on heterotic 
 on smooth CYs.E8 × E8

• Need vector bundle - mathematically 
difficult


• CY metric, HYM connection not known 
- analytical calculations impossible


• no natural hierarchy of localisation of 
gauge degrees of freedom along the 
gravitational branes

Difficulties

heterotic 
E8 × E8
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Content
• Heterotic Model Building and Line Bundle Standard Models


• Phenomenology of Heterotic Line Bundle Standard Models


• An Example Model


• Moduli Stabilisation - Strings and Heterotic


• Heterotic Flux Stabilisation - Generalities


• Example Cases and General Arguments


• Conclusions
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Heterotic CY Compactifications and Line Bundle Standard Models
Ingredients: 

• heterotic  superstring theory


• Calabi-Yau threefold 


• vector bundle  for vector multiplets

E8 × E8

X

V → X

Mathematics Physics

Topology Spectrum
Geometry CouplingsM3,1 X6

V

6

Step 1 : GUT Gauge Group

Step 2 : Wilson-line breaking

Step 3 :  symmetriesU(1)
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We work with Complete Intersection 
Calabi-Yau manifolds (CICYs):


These are manifolds that are hypersurfaces 
in projective spaces.
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couplings
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Direct perturbative computation with aid of ML techniques 
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X

V → X

Mathematics Physics

Topology Spectrum
Geometry CouplingsM3,1 X6

V
Number of families is given 
by index of bundle .− ind V

Coefficient calculation - DIFFICULT:  

•  requires knowledge of metric of  

• complicated dependence on moduli 
fields 

• non-perturbative corrections are hard

KIJ X
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Step 2 : Wilson-line breaking 

• Further break  to
 using a Wilson 

line bundle

SU(5)
SU(3) × SU(2) × U(1)

Low-energy matter field 
structure:  of 248 E8

Large number of models with 
SM spectrum found by 

computational methods! 
[Anderson et al. (2013), Constantin et al. 

(2018)]
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such that for example
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W = Λ̂u
IJ(ϕ)HuQIuJ
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Can we calculate couplings and 
extract flavour physics?



Low-energy effective action and symmetries
• In low-energies the models are 4d  SUSY Standard Models [Anderson et al. (2012)]


• Relevant terms in the Kähler potential and superpotential:





𝒩 = 1

K = ̂kuHuH̄u + ̂kdHdH̄d + KC
IJC

IC̄J + …

W = Λ̂u
IJHuQIuJ + Λ̂d

IJHdQIdJ + Λ̂e
IJHdLIeJ + ̂μHuHd + ̂μILIHu + ̂μ0
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quarks and charged lepton 
masses



mu, mc, …, VCKM

me, mμ, mτ

 -term  

• electroweak breaking scale


• this should be suppressed compared 
to the Planck scale as





• can use VEVs of moduli fields to 
suppress this term

μ

MH ∼ 10−17MP

Neutrino Physics 

• want to get three light families of 
neutrinos via the see-saw mechanism


• bundle moduli  with zero VEVs act 
as RH neutrinos


•  - Dirac mass terms


•  - Majorana mass terms

ϕi

̂μILIHu

̂μ0 ⊃ Mijϕiϕj
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Goal
• Using the global  symmetries  we write down low-energy effective 

Lagrangian


• Extract relevant phenomenological terms - are there models that give good 
phenomenology?

U(1) 𝒥
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Goal
• Using the global  symmetries  we write down low-energy effective 

Lagrangian


• Extract relevant phenomenological terms - are there models that give good 
phenomenology?

U(1) 𝒥

Models with good 
phenomenology 

• fermionic masses and 
mixings (flavour physics)


• electroweak breaking scale


• neutrino physics

Models with SM spectrum 
[Anderson et al. (2013)] 

• three chiral families


• one vector-like Higgs pair


• no anti-families
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Method

Step 1: -term suppression 

•  , use VEVs of moduli 
fields to set small -term


• find combinations of VEVs that 
would set 

μ

MH ≪ MP
μ

μ → 0

Models with SM spectrum Models with good pheno

Step 2: masses and mixings 

• for each combination use remaining 
VEVs to obtain masses and mixings


• gradient descent algorithm to find 
suitable VEVs and Yukawa 
coefficients

Step 3: neutrino physics 

• compute Dirac and Majorana 
couplings and construct neutrino 
masses - three light families?
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Step 4: stabilise moduli and 
coefficients 

• explain the values of the moduli 
VEVs and the Yukawa coefficients
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check if VEV choices 
consistent with possible 

neutrino physics

Step 4: stabilise moduli and 
coefficients 

• explain the values of the moduli 
VEVs and the Yukawa coefficients
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Results of Scans
General Observations

• Order-one coefficients may generate hierarchy 
- their ranges are bounded


• Need full-rank up-Yukawa textures


• Trade-off between increasing rank of down-
Yukawa and decreasing order-one range


• Generically R-parity violating terms not 
suppressed

Phenomenological Observations
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Example Model
-term analysisμ

-term can be consistently set to zero if we 
pick


μ

{⟨Φ3⟩, ⟨Φ4⟩, ⟨Φ5⟩, ⟨ϕ1,3⟩, ⟨ϕ1,4⟩, ⟨ϕ2,4⟩, ⟨ϕ2,5⟩, ⟨ϕ3,5⟩, ⟨ϕ1,2⟩} → 0

Downstairs Spectrum

Compute -term insertionsμ
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Downstairs Spectrum
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Example Model
Yukawa Masses

Downstairs Spectrum

Yukawa Insertions

Scan of VEV values




(mu , md , mt) = (0.0216,1.27,172.4)GeV
(md , ms , mb) = (0.00467,0.093,4.18)GeV

(me , mμ , mτ) = (0.000511,0.106,1.78)GeV

VCKM =
0.970 0.242 0.00358
0.242 0.969 0.0448

0.00737 0.0444 0.999

Masses and mixing

17



Short Summary
• Explored possible phenomenological issues and properties of heterotic line 

bundle Standard Models up to Picard number 5


•  models with suppressed -term and accurate charged fermion masses 
and mixings can be obtained


• Neutrino physics - nothing interesting so far…


• And R-parity needs more work too…

𝒪(10) μ
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Moduli Stabilisation in String Theory
• So far we have only set moduli VEVs to the values that we need to get 

phenomenological agreements.


• Any realistic attempt to reproduce string models must address the large 
number of light scalar moduli fields.
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Moduli Stabilisation in String Theory
• So far we have only set moduli VEVs to the values that we need to get 

phenomenological agreements.


• Any realistic attempt to reproduce string models must address the large 
number of light scalar moduli fields.

1. Unbroken supersymmetry


2. Large # moduli fields

Problems of vacuum solutions 
in string theory SUSY-breaking mechanismsno SUSY observed

Moduli Stabilisationno long-range fifth force
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Moduli Stabilisation in String Theory

• complex structure moduli 


• Kähler moduli 


• gauge bundle moduli 


• axiodilaton 

zI

Ti

ϕa

τ

Types of Moduli Fields

• -form quantised fluxes


• localised sources (D-branes)

p

Non-vacuum solutions
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Moduli Stabilisation in String Theory

• complex structure moduli 


• Kähler moduli 


• gauge bundle moduli 


• axiodilaton 

zI

Ti

ϕa

τ

Types of Moduli Fields

• -form quantised fluxes


• localised sources (D-branes)

p

Non-vacuum solutions

• sources of stress-energy in 
internal space - non-vacuum 
solutions


• small corrections to vacuum 
solution


• lead to SUSY-breaking mass 
splitting 


• generate scalar potential 
for moduli fields - masses

V

Flux Compactifications

20



Moduli Stabilisation in String Theory
Construction of isolated vacua

• for a particular type of theory write down structure of 
superpotential  and Kähler potential 


• Superpotential: 





• Kähler potential:


W K

W = Wflux(τ, zI) + Wnp(τ, zI, Ti)

K = Ktree + …

Step 1: 4d  SUSY action𝒩 = 1
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Moduli Stabilisation in String Theory
Construction of isolated vacua

• for a particular type of theory write down structure of 
superpotential  and Kähler potential 


• Superpotential: 





• Kähler potential:


W K

W = Wflux(τ, zI) + Wnp(τ, zI, Ti)

K = Ktree + …

Step 1: 4d  SUSY action𝒩 = 1

perturbatively in orders 
of  and  expansionsα′￼ gs

• key quantity is F-term scalar potential





• to obtain SUSY vacua - exploit structure such 
that F-terms of all moduli vanish exactly


VF = eK [KMN̄DMWD̄N̄W̄ − 3 |W |2 ]

DTi
W = DzI

W = DτW = 0

Step 2: Construct  and exploit structureV

exhibits no-scale 
structure

need quantum 
corrections in 

 to 
stabilise 

Wnp , Kpert , Knp
Ti
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The KKLT Scenario

22



Moduli Stabilisation in Heterotic Theories
The KKLT Scenario

• Start with type IIB flux compactifications on O3/O7 
orientifolds


• Superpotential: 





• Kähler potential:


W = Wflux(τ*, z*I ) + 𝒜(τ, zI)e−2πTi/c(G) + …

K = − 2 log(23/2g−3/2
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Step 1: 4d  SUSY action𝒩 = 1
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• vacuum occurs in regime where all approximations are valid 
( , -exp., back-reactions)


• complex structure stabilised near conifold singularity and fluxes 
lead to Klebanov-Strassler throat region


•  - contribution by anti-D3 branes at the throat causes uplift to 
dS vacua
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( , -exp., back-reactions)


• complex structure stabilised near conifold singularity and fluxes 
lead to Klebanov-Strassler throat region


•  - contribution by anti-D3 branes at the throat causes uplift to 
dS vacua

V = eK [KMN̄DMWD̄N̄W̄ − 3 |W |2 ] + Vup

gs ≪ 1 α′￼

Vup

Step 2: Construct  and exploit structureV

Key idea 1 
if  exponentially small, small SUSY-

breaking of fluxes is compensated by 
W0 = ⟨Wflux⟩

Wnp

Key idea 2 
compactification near conifold singularity allows 

controllable breaking of SUSY

Wnp(τ, zI, Ti)

Ktree K(α′￼)3 Kcs

VF
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Moduli Stabilisation in Heterotic Theories
Basics of Periods and Fluxes

Question: What is ?Wflux

Classical Gukov-Vafa-Witten flux 
superpotential:


Wflux ∼ ∫X6

G3 ∧ Ω
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Moduli Stabilisation in Heterotic Theories
Basics of Periods and Fluxes

Question: What is ?Wflux

Classical Gukov-Vafa-Witten flux 
superpotential:


Wflux ∼ ∫X6

G3 ∧ Ω

holomorphic (3,0) form on X6

flux G3 = F3 − τH3

F3 = dC2 H3 = dB2

RR 3-form flux NSNS 3-form flux

stabilise complex 
structure moduli

Typically introduce symplectic basis of , 



Define period vector  as


,


such that


 - homogeneous projective coords on cs moduli space


 - prepotential,   


    holomorphic 3-form

αA , βA ∈ H3(X6, ℤ)
A = 0,…, h2,1

Π

Π = (
∫ Ω ∧ βA

∫ Ω ∧ αA) = (ℱA

𝒵A)
𝒵A

ℱ ℱB =
∂ℱ
∂𝒵B

Ω = 𝒵AαA − ℱBβB
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Moduli Stabilisation in Heterotic Theories
IIB (KKLT) vs Heterotic
Central Question: Can we do something similar in heterotic  theories?E8 × E8

Type IIB (KKLT)

Heterotic

Available Fluxes Flux Integers

f = (∫ F3 ∧ αA , ∫ F3 ∧ αA)
μ = (∫ H3 ∧ αA , ∫ H3 ∧ αA)

μ = (∫ H3 ∧ αA , ∫ H3 ∧ αA)

 , F3 H3

H3

NS-NS fluxRR Flux
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IIB (KKLT) vs Heterotic
Central Question: Can we do something similar in heterotic  theories?E8 × E8

W = W0 + 𝒜(τ, zI)e−2πTi/c(G) + …

can make  small 
due to large number of 

RR fluxes 

W0
Type IIB (KKLT)

Heterotic

W0 =
2
π

( f − τμ)T ⋅ η ⋅ Π

 are quantised fluxes of f F3  are quantised fluxes of μ H3

No RR fluxes - traditional 
small  argument does 
not work - WHAT DO WE 

DO?

W0
W0 = μT ⋅ η ⋅ Π

W = W0 + ℬ(τ, zI, ϕa)e−2πTi + …
some Pffaffian
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Moduli Stabilisation in Heterotic Theories
Quick Recap

• Natural context to study moduli stabilisation - flux compactifications 

• Most prominent example - KKLT scenario, requires small 


• Argument requires large number of RR fluxes which does not exist in 
heterotic theories


• Is it possible that we have  `accidentally’ small to compete with the small 
non-perturbative term? For example - some natural region in complex 
structure moduli space that gives small ?

W0

W0

W0
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Heterotic Moduli Stabilisation
Setting the scene

Recall introduced symplectic basis of 
, 


Defined period vector  as


,

αA , βA ∈ H3(X6, ℤ) A = 0,…, h2,1

Π

Π = (
∫ Ω ∧ βA

∫ Ω ∧ αA) = (ℱA

𝒵A)
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Heterotic Moduli Stabilisation
Setting the scene
• Goal: To analyse whether  can be small in the heterotic 

setting - only look at complex structure moduli dependence.


• The superpotential and Kähler potential at tree-level are:








where  is the symplectic defining matrix.

W0

W = w∫X6

H3 ∧ Ω = w [nA𝒵A − mAℱA] = wμTηΠ

K = − log (i∫X6

Ω ∧ Ω̄) = − log [i (𝒵̄AℱA − 𝒵Aℱ̄A)] = log (−iΠ†ηΠ)

η = ( 0n 1n

−1n 0n)
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• Scalar potential:





• Global SUSY vacua:





• Local SUSY vacua:


V = eK (Kab̄DaWDb̄W̄ − 3 |W |2 )

∂W
∂Za

= 0

Fa = Wa + KaW = 0

Things to calculate
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Π

Π = (
∫ Ω ∧ βA
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𝒵A)

• Scalar potential:





• Global SUSY vacua:





• Local SUSY vacua:


V = eK (Kab̄DaWDb̄W̄ − 3 |W |2 )

∂W
∂Za

= 0

Fa = Wa + KaW = 0

Things to calculate

have defined affine versions of the 

cs coordinate:  on the 

patch 

ZA =
𝒵A

𝒵0
𝒵0 ≠ 0
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Heterotic Moduli Stabilisation
Large Complex Structure Limit
• Let us first look at large complex structure limit, where .


• In this case the leading pre-potential is


𝒵A → ∞

ℱ = −
1
6

d̃abc𝒵a𝒵b𝒵c

𝒵0

 is mirror volumeκ̃ = d̃abczazbzc
28



Heterotic Moduli Stabilisation
Large Complex Structure Limit
• Let us first look at large complex structure limit, where .


• In this case the leading pre-potential is


𝒵A → ∞

ℱ = −
1
6

d̃abc𝒵a𝒵b𝒵c

𝒵0

• Want to set





• Crucial obstacle - solving this leaves





• This cannot be set small since 

∂W
∂Za

= w [ina − d̃abcmbZc +
im0

2
d̃abcZbZc] = 0

ℑ(W0) = w [−
m0

3
κ̃]

κ̃ ≫ 1

Global SUSY

 is mirror volumeκ̃ = d̃abczazbzc
28



Heterotic Moduli Stabilisation
Large Complex Structure Limit
• Let us first look at large complex structure limit, where .


• In this case the leading pre-potential is


𝒵A → ∞

ℱ = −
1
6

d̃abc𝒵a𝒵b𝒵c

𝒵0

• Want to set





• Crucial obstacle - solving this leaves





• This cannot be set small since 

∂W
∂Za

= w [ina − d̃abcmbZc +
im0

2
d̃abcZbZc] = 0

ℑ(W0) = w [−
m0

3
κ̃]

κ̃ ≫ 1

Global SUSY
• Want to set





• Crucial obstacle - solving this leaves





• This cannot be set small since 

Fa =
∂W
∂Za

− 2ZaW = 0

ℑ(W0) = w [ 2m0

3
κ̃]

κ̃ ≫ 1

Local SUSY

 is mirror volumeκ̃ = d̃abczazbzc
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Heterotic Moduli Stabilisation
General Complex Structure

• For general complex structure we do not have a general form of the pre-
potential .


• Typically complicated - given by hypergeometric functions…


• Similar general arguments suggest that there is no consistent SUSY 
Minkowski vacua. But doesn’t forbid AdS or dS vacua.


• What if we look at explicit examples to analyse general complex structure 
moduli spaces?

ℱ
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Mirror Quintic

p = ∑
k=1

x5
k − 5ψ

5

∏
k=1

xk

Manifold
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Mirror Quintic

p = ∑
k=1

x5
k − 5ψ

5
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ψ → ∞

|ψ | ≤ 1

|ψ | > 1

ϖj(ψ) =
3

∑
r=0

logr(5ψ)
∞

∑
n=0

bjrn
(5n)!

(n!)5(5ψ)5n

Period Expansion |ψ | > 1
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Mirror Quintic
Global SUSY

• Scan all flux integers 


• Solve for 


• Compute values of 


• Best one obtained -  at 
and  .


•  not symplectically-invariant under !

(n0, n1, m0, m1) ∈ {−20 , … , 20}

∂Ŵ
∂ψ

= 0

|Ŵ/w |

|Ŵ/w | ∼ 0.064
(n0, n1, m0, m1) = ± (5, − 2,9, − 4) ψ = − 0.55 − 0.25i

Ŵ Sp(4,ℤ)
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Mirror Quintic
Local SUSY

• Instead look at quantity





• Repeat search for F-term set to zero,





• Use solution  which obeys  
to compute .

𝒱 = eK/2Ŵ

Fa = Wa −
κa

κ
W

ψ0 |ψ0 | ≤ 1
𝒱

33



Mirror Quintic
Local SUSY

• Instead look at quantity





• Repeat search for F-term set to zero,





• Use solution  which obeys  
to compute .

𝒱 = eK/2Ŵ
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Results
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Period Expansion in
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1 ± η
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Results

V < 1

F-term: |ψ | < 1

small W0 seems possible!
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Conclusions
• Want to see if we can repeat KKLT-like scenario in heterotic string theory.


• No RR fluxes in heterotic means small-  argument is not possible in 
heterotic.


• But  seems possible in some models - need specific period structure!


• Constraints on period structure can be in principle be derived!

W0

W0
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The Dream Scenario

SUV = ∫ Dx…

UV action

S4d = ∫ d4x R + …

4d effective action

Calabi-Yau Data 
(geometry + topology)

Non-perturbative effects

String Phenomenology

Moduli Stabilisation Electroweak Physics

SUSY

Integral



Outlook
• There is a lot more to do in string theory!


• String model building is still hard - many computational and algebraic 
techniques needed. 

• Phenomenological issues like R-parity, electroweak symmetry breaking needs to 
be resolved.


• Moduli stabilisation in heterotic string theory is difficult! 

• How often do ‘accidents’ occur?


• Are there general rules for small ?W0
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